首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
考虑隔水管在正常钻井作业过程中由于轴向拉伸储存的弹性势能和反冲过程中钻井液下泄时产生的黏滞阻力的共同影响,通过将隔水管离散化为三自由度质量-弹簧-阻尼系统,建立隔水管紧急解脱后的反冲响应力学分析模型和控制方程;以浮式钻井设备的升沉运动作为边界条件,以隔水管解脱前的变形为初始条件,考虑控制方程中阻尼矩阵不能被对角化的影响,采用复模态分析法对控制方程进行求解;根据实例分析得到反冲过程中隔水管底部总成(low marine riser package,LMRP)振动位移的变化规律,并讨论水深、波高、顶部张紧器弹簧刚度及解脱相位角等因素对LMRP振动位移的影响,研究隔水管反冲响应的主控因素。结果表明:在同样的作业条件下,水深越大,隔水管紧急解脱的安全作业窗口越小;波高越大,隔水管的反冲响应越剧烈;顶部张紧器的刚度是决定隔水管反冲特性的一个重要因素,张紧器刚度越小,LMRP与防喷器发生碰撞的可能性越大;解脱相位角对隔水管的反冲特性影响不大。  相似文献   

2.
为了探究大质量、大刚度防喷器组(blowout preventers, BOPs)对深水钻井隔水管系统动态相应预测精度的影响,根据细长钻井隔水管与刚性防喷器组的结构特点,提出两者刚柔耦合的概念,采用能量法推导隔水管–防喷器组–水下井口系统的动能和势能,采用LAGRANGE方法建立耦合系统动力学理论模型,采用科学计算软件和Newmark-β直接积分法对动力学模型进行数值计算。以南海某深水钻井隔水管为例,开展基于耦合动力学模型的隔水管系统动态响应分析。结果表明,采用本文理论模型得到的隔水管不同位置的节点位移、单元弯矩、上部和下部挠性接头转角时程曲线、整体侧向位移包络线和弯矩包络线等与ABAQUS仿真结果均吻合良好,最大误差为8.8%。此方法可为深水钻井隔水管和水下井口系统动态分析提供参考。  相似文献   

3.
全耦合深海平台系统中液压张紧器的数值模拟   总被引:1,自引:0,他引:1  
基于利用ABAQUS开发的平台/系泊索/立管全耦合分析程序,研究应用于深海平台系统与顶端张紧式立管连接的液压张紧器的数值模型.对数值模拟液压张紧器中的刚度非线性效应、摩擦效应以及平台、张紧器和顶端张紧式立管的耦合连接方式进行了研究,提出了非线性液压张紧器模型.通过张紧器线性和非线性模型结果的比较,得到了非线性效应对立管和平台响应的影响,对提高顶端张紧式立管极限强度和疲劳寿命的预报精度有一定的帮助作用.  相似文献   

4.
考虑深水钻井过程中浮式平台的升沉运动,基于Vander Pol尾流振子模型,建立深水钻井隔水管横流向涡激-参激耦合振动力学分析模型和控制方程,采用Galerkin法和Newmark-β方法对控制方程进行求解,获得涡激-参激耦合振动下深水钻井隔水管的应力时程曲线;采用雨流计数法和Palmgren-Miner线性累积损伤准则,获得深水钻井隔水管的疲劳损伤热点,在此基础上讨论波高、波浪周期、海面海流流速、顶张力对隔水管疲劳热点处疲劳损伤的影响。结果表明:隔水管横流向涡激-参激耦合振动疲劳损热点位于隔水管底部;波高主要通过影响隔水管参激振动特性影响隔水管的疲劳损伤,波高越大,疲劳损伤越大;波浪周期主要通过改变参激振动中隔水管的轴向力影响其疲劳损伤,波浪周期越小,疲劳损伤越大;海面海流流速主要通过改变隔水管横流向的涡激振动特性影响其疲劳损伤,海面海流流速越大,疲劳损伤越大;顶张力主要通过改变隔水管的轴向力分布影响隔水管的横流向涡激振动,进而对其疲劳损伤产生影响,顶张力系数越小,疲劳损伤越大。  相似文献   

5.
在深水钻完井测试作业过程中,由于海流作用隔水管易发生涡激振动引起疲劳损伤,由隔水管涡激振动引起测试管柱疲劳损伤问题不容忽略。针对深水高压气井测试作业特点,考虑测试管柱和隔水管之间相互作用,建立测试管柱-隔水管耦合涡激振动模型,提出测试管柱-隔水管涡激疲劳分析方法。结合南海某深水高压气井,研究测试管柱-隔水管耦合系统涡激振动机理、疲劳损伤规律及影响因素。研究结果表明:测试管柱-隔水管耦合系统高流速下更易于发生多模态涡激振动,疲劳损伤沿水深方向呈现波动变化,顶部和下挠性接头附近疲劳损伤最为严重,其中测试管柱疲劳损伤约为0.2~0.25倍隔水管疲劳损伤,适当增大隔水管顶张力和测试管柱提升力可有效改善测试管柱-隔水管耦合系统涡激疲劳性能。  相似文献   

6.
通过有限单元法建立隔水管模型,分析了三级风、八级风——两种不同风力条件下,顶部张力比和船体偏移率对隔水管稳定性的影响。计算结果表明:隔水管底部横向载荷随张力比和偏移率呈线性变化。在张力比增加的过程中,船体的偏移率越大,横向载荷的增加幅度也越大。隔水管底部转角随偏移率的增加呈线性增长,但随着张力比的提高会迅速降低,然后趋于稳定。在保证张力比的前提下,风力的增加对底部转角和载荷影响极为有限。自然条件下,提高张力比是维持隔水管稳定性的有效手段。本研究对分析深水钻井平台的海底井口稳定性有一定指导意义。  相似文献   

7.
隔水管与井口系统的稳定性对海洋石油安全高效地生产与开发起着决定性的作用。为研究实际工况下的隔水管和井口系统的力学行为,综合考虑浪流载荷和土壤抗力等因素,建立了隔水管与井口系统耦合力学理论模型;并分析了张紧力和平台偏移量对隔水管和地层组合管柱力学行为的影响。分析结果表明,平台偏移量对隔水管与地层组合管柱的横向位移和弯矩影响不大,增加张紧力可以减小隔水管的横向位移和截面弯矩;同时也能减小地层组合管柱的横向位移,对增强井口系统的稳定性有促进作用。  相似文献   

8.
隔水管与井口系统的稳定性对海洋石油安全高效地生产与开发起着决定性的作用。为研究实际工况下的隔水管和井口系统的力学行为,综合考虑浪流载荷和土壤抗力等因素,建立了隔水管与井口系统耦合力学理论模型;并分析了张紧力和平台偏移量对隔水管和地层组合管柱力学行为的影响。分析结果表明,平台偏移量对隔水管与地层组合管柱的横向位移和弯矩影响不大,增加张紧力可以减小隔水管的横向位移和截面弯矩;同时也能减小地层组合管柱的横向位移,对增强井口系统的稳定性有促进作用。  相似文献   

9.
基于涡激抑制的隔水管浮力块分布方案优化   总被引:3,自引:3,他引:0  
浮力块是深水钻井隔水管系统的重要组成部分,其主要作用是降低隔水管湿重,以减少对钻机的张力需求.涡激振动(VIV)是引起隔水管屈服失效与疲劳失效的主要因素,也是隔水管设计过程中需要考虑的主要问题.基于SHEAR7程序对隔水管系统进行VIV分析,通过研究不同浮力块分布形式对隔水管系统涡激振动疲劳特性的影响,对浮力块分布方案进行优化.从抑制VIV疲劳损伤角度出发,对隔水管系统配置浮力块时,应尽量促使系统响应频率由浮力块与隔水管共同控制,以避免发生涡激共振.还可在避开高流速区域的前提下,促使系统激励频率由浮力块控制,这样既避免来流通过浮力块为系统输入较多的能量,同时又能降低系统的响应模态阶次.  相似文献   

10.
 无隔水管深水钻井作业是深水钻井的关键环节之一,管柱的力学行为十分复杂。本文阐述了无隔水管深水钻井管柱的纵横弯曲变形力学模型、纵向振动力学模型及无隔水管深水钻井送入管柱设计与强度校核方法等,分析了作业管柱变形及运动的主要影响因素和规律,提出了解决这类复杂工程问题的简化思路。结果表明,作业管柱的轴向拉力过大或过小、海水深度大、平台偏移或升沉振动幅度过大以及海流流速快等因素对管柱的强度安全具有显著影响。在无隔水管深水钻井作业管柱强度设计与校核时,应充分考虑管柱的作业工况及环境载荷的影响。  相似文献   

11.
隔水管系统足海洋钻井的主要设备之-本丈对描述隔水管运动的四阶非线性偏徽分方程和边界条件进行了简化,并应用有限差分法对隔水管的受力情况进行数值分析.作用在隔水管上的顶张力,使用四种海况进行研究,并编制了相应的计算程序.通过实例计葬,与美国应力工程服务奋司的计葬结果进行比较,结果完全-致.末文提供的动态分析方法及计葬程序具有方法简便、精确度高和机时省千优点,对设计和校核隔水管系统具有实用价值.  相似文献   

12.
深水钻井隔水管单根基本参数确定方法   总被引:5,自引:2,他引:3  
提出利用各种力学准则确定深水钻井隔水管单根基本参数的方法,包括单根主管与辅助管线参数、浮力块参数、隔水管接头参数等。结果表明:确定隔水管单根主管基本尺寸主要有环向应力准则、轴向应力准则和挤毁压力准则,根据环向应力准则得到的结果最保守;确定辅助管线参数主要依据等效应力准则;确定浮力块参数主要是合理确定浮力块的外径和密度;隔水管接头等级确定要依据规范考虑不同载荷工况进行选型设计。外径0.5334 m,内径0.48895 m的隔水管可应用于1.830 km深的水域,且隔水管系统中无须配置填充阀,辅助管线设计合理,浮力块选用3种密度可满足工作水深的需要,选配E级隔水管接头可满足使用要求。  相似文献   

13.
深水钻井隔水管的准静态非线性分析   总被引:5,自引:1,他引:4  
对深水钻井隔水管进行准静态分析时,需搜索波浪的最大相位角以寻找最大波流合力,提出了搜索波浪最大相位角的最大Mises应力准则.开发了隔水管准静态分析系统,系统以C Builder为开发环境,后台调用ABAQUS进行计算,调用面向对象Python程序访问数据库,提取计算结果,实现了波浪最大相位角的自动搜索和深水钻井隔水管的准静态非线性分析.应用实例验证了该分析系统的有效性.结果表明,波浪相位角为180°时隔水管准静态响应最大,其次为波浪相位角90°,2700°,0°,隔水管静态响应介于波浪相位角为90°与270°的准静态响应之间.  相似文献   

14.
深水钻井隔水管与井口技术研究进展   总被引:1,自引:0,他引:1  
钻井隔水管与井口系统是深水钻井装备中重要而薄弱的环节,其正确设计与使用直接关系到钻完井作业的顺利完成。系统开展了面向南海的深水钻井隔水管与井口技术研究,建立其力学分析方法,形成一套深水钻井隔水管与井口系统钻前设计与作业技术体系;提出隔水管与井口系统的波激疲劳、涡激疲劳、磨损以及隔水管接头完整性评估方法,并进一步完善深水钻井隔水管与井口完整性管理方案;建立深水钻井隔水管关键装备与作业风险评价框架,探索台风环境下的隔水管系统安全保障的关键技术;在此基础上开发深水钻井隔水管作业管理软件,承担中国南海6口自营深水井的隔水管与井口系统钻前设计与作业技术研究工作,成功将科研成果应用到深水钻井实践中,并取得良好的应用效果。笔者对这些进展进行总结和回顾,并对今后的研究方向进行展望。  相似文献   

15.
为了对自主水下航行器(AUV)载荷侧向分离安全性进行研究,建立了AUV载荷侧向分离三维运动模型.基于多刚体系统笛卡尔动力学理论,考虑了侧向分离过程中载荷与运载器之间的耦合运动关系,采用带拉格朗日乘子的多体系统动力学方程,建立载荷侧向分离三维运动模型;基于刚体动力学理论,采用牛顿-欧拉方法,建立AUV载荷侧向分离后载荷与运载器的单刚体运动模型.为避免求解过程中出现约束违约现象,采用约束违约稳定法对AUV载荷侧向分离多体系统运动方程进行处理,采用四阶龙格库塔积分算法对一定工况下载荷侧向分离运动进行仿真,结果表明所建立的AUV载荷侧向分离三维运动模型是有效的.  相似文献   

16.
以间隙单元模拟隔水导管系统与导管架平台导向支撑间的相互作用,利用有限元法研究悬臂自升式钻井平台运动、导管架平台偏移等位移荷载作用下隔水导管系统的挠曲变形响应,并以隔水导管系统的强度与稳定性为设计准则,分析钻井平台与固定平台相对位移同相和反相的最大相对运动位移及其弯矩分布。计算结果表明,在给定的隔水导管强度和截面尺寸下,钻井平台的最大相对位移为75.0 cm。  相似文献   

17.
为了改善精密平台的工作性能,减小台体在宽频环境激励作用下的动力响应,设计了一种基于磁流变阻尼器的混合隔减振系统.首先建立了该隔减振系统的7自由度动力学仿真模型,动力学分析结果表明,该隔减振系统可以在较宽的频域范围控制台体的动力响应.然后,在分析隔减振系统各参数对隔减振效果的灵敏度基础上,采用遗传算法优化其中灵敏度较大的参数,使得该隔减振系统可以达到既定的控制指标.优化分析结果表明,优化后的混合隔减振系统不仅将台体的位移响应控制在限制条件范围内,还能有效减小台体的加速度响应.当频域大于50 Hz时,台体加速度响应控制效果明显;当频率小于50 Hz时,控制效果稍差.  相似文献   

18.
导向架隔水管在波流联合作用下的非线性动力响应   总被引:1,自引:1,他引:1  
考虑了波流联合作用下固定式钻井装置隔水管与导向架之间的间隙-接触条件,讨论了非线性边界条件下瞬态动力学问题的求解方法。应用有限元法,将隔水管简化为海底泥面线下3m处固支、下层平台简支、中间不同高度的横向振动被导向架限制的梁模型,采用ANSYS软件,利用其combination40单元来模拟隔水管与导向架之间的间隙-接触条件,实例计算了百年重现期环境载荷下隔水管的动力响应,得到了典型节点的位移-时间历程和典型单元的等效应力-时间历程,成功实现了隔水管的强度校核。该计算结果为带导向架隔水管的设计与分析提供了参考。  相似文献   

19.
深水无隔水管钻井环境下,裸露在海水中的钻柱受到复杂动力作用。在考虑深水钻井平台运动、波流共同作用情况下,建立了深水无隔水管环境下钻柱受力理论模型。算例分析表明,钻井平台的慢漂运动对裸露在海水中的钻柱变形和受力有一定的影响。在满足强度要求的情况下,尽量选用直径较小的钻柱。无隔水管环境下,裸露在海水中的钻柱在泥线以下的长度越长,则钻柱上部所受拉力越大,从而可使泥线附近钻柱段的变形和受力情况得到改善。  相似文献   

20.
针对深海桁架式Spar平台,考虑三点张紧式系泊定位,研究其纵荡、横荡和垂荡三个自由度的固有运动特性.考虑纤维缆索的材料非线性与几何非线性特性,对缆索力学平衡方程重新推导计算系泊缆索张力与位移的变化关系.采用准静态方法,建立考虑系泊作用的平台耦合系统纵荡、横荡和垂荡运动方程,数值求解平台固有运动特性,并讨论系泊条件对平台自振特性的影响.结果表明,在平台小幅运动下,系泊回复力与位移基本呈线性关系,但随着平台位移的增大,系泊回复力随位移变化开始表现出一定的非线性;系泊条件的改变将会改变平台水平运动的固有频率;系泊系统对垂荡运动的固有特性影响不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号