首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Mitotic regulation of the anaphase-promoting complex   总被引:1,自引:1,他引:0  
Orderly progression through mitosis is regulated by the anaphase-promoting complex/cyclosome (APC/C), a large multiprotein E3 ubiquitin ligase that targets key mitotic regulators for destruction by the proteasome. APC/C has two activating subunits, Cdc20 and Cdh1. The well-established view is that Cdc20 activates APC/C from the onset of mitosis through the metaphase-anaphase transition, and that Cdh1 does so from anaphase through G1. Recent work, however, indicates that Cdh1 also activates APC/C in early mitosis and that this APC/C pool targets the anaphase inhibitor securin. To prevent premature degradation of securin, the nuclear transport factors Nup98 and Rae1 associate with APC/CCdh1-securin complexes. In late metaphase, when all kinetochores are attached to spindle microtubules and the spindle assembly checkpoint is satisfied, Nup98 and Rae1 are released from these complexes, thereby allowing for prompt ubiquitination of securin by APC/CCdh1. This, and other mechanisms by which the catalytic activity of APC/C is tightly regulated to ensure proper timing of degradation of each of its mitotic substrates, are highlighted. Received 8 October 2006; received after revision 24 November 2006; accepted 8 January 2007  相似文献   

2.
Hypermethylation of SOCS genes is associated with many human cancers, suggesting a role as tumor suppressors. As adaptor molecules for ubiquitin ligases, SOCS proteins modulate turnover of numerous target proteins. Few SOCS targets identified so far have a direct role in cell cycle progression; the mechanism by which SOCS regulate the cell cycle thus remains largely unknown. Here we show that SOCS1 overexpression inhibits in vitro and in vivo expansion of human melanoma cells, and that SOCS1 associates specifically with Cdh1, triggering its degradation by the proteasome. Cells therefore show a G1/S transition defect, as well as a secondary blockade in mitosis and accumulation of cells in metaphase. SOCS1 expression correlated with a reduction in cyclin D/E levels and an increase in the tumor suppressor p19, as well as the CDK inhibitor p53, explaining the G1/S transition defect. As a result of Cdh1 degradation, SOCS1-expressing cells accumulated cyclin B1 and securin, as well as apparently inactive Cdc20, in mitosis. Levels of the late mitotic Cdh1 substrate Aurora A did not change. These observations comprise a hitherto unreported mechanism of SOCS1 tumor suppression, suggesting this molecule as a candidate for the design of new therapeutic strategies for human melanoma.  相似文献   

3.
4.
    
Summary In 150 out of 164 human hypothalami of all ages, nerve cells with indirect intranuclear inclusions and other karyological specialities were observed. These inclusions existing of intranuclear located cytoplasmic portions must be interpreted as a consequence in a disturbance of the spindle apparatus which took place during the last preceeding mitosis. Identical alterations can be observed after experiments which deal with the disturbance of mitosis and in malign tumours.  相似文献   

5.
Regulation of cell division requires the integration of signals implicated in chromatin reorganization and coordination of its sequential changes in mitosis. Vaccinia-related kinase 1 (VRK1) and Aurora B (AURKB) are two nuclear kinases involved in different steps of cell division. We have studied whether there is any functional connection between these two nuclear kinases, which phosphorylate histone H3 in Thr3 and Ser10, respectively. VRK1 and AURKB are able to form a stable protein complex, which represents only a minor subpopulation of each kinase within the cell and is detected following nocodazole release. Each kinase is able to inhibit the kinase activity of the other kinase, as well as inhibit their specific phosphorylation of histone H3. In locations where the two kinases interact, there is a different pattern of histone modifications, indicating that there is a local difference in chromatin during mitosis because of the local complexes formed by these kinases and their asymmetric intracellular distribution. Depletion of VRK1 downregulates the gene expression of BIRC5 (survivin) that recognizes H3-T3ph, both are dependent on the activity of VRK1, and is recovered with kinase active murine VRK1, but not with a kinase-dead protein. The H3–Thr3ph–survivin complex is required for AURB recruitment, and their loss prevents the localization of ACA and AURKB in centromeres. The cross inhibition of the kinases at the end of mitosis might facilitate the formation of daughter cells. A sequential role for VRK1, AURKB, and haspin in the progression of mitosis is proposed.  相似文献   

6.
Summary Pea embryos grown in the presence of 2.5 mM hydroxyurea from the beginning of imbibition showed a mitotic peak the height of which was considerably less than that of the control, material. Soon after the mitotic peak, there was a complete cessation of mitosis in the treated material. The extent of suppression of mitosis during the first post-dormancy cell cycle caused by hydroxyurea has been used to obtain an estimate of the relative proportion of 2C and 4C cells in the embryo.  相似文献   

7.
The Dictyostelium centrosome consists of a layered core structure surrounded by a microtubule-nucleating corona. A tight linkage through the nuclear envelope connects the cytosolic centrosome with the clustered centromeres within the nuclear matrix. At G2/M the corona dissociates, and the core structure duplicates, yielding two spindle poles. CP148 is a novel coiled coil protein of the centrosomal corona. GFP-CP148 exhibited cell cycle-dependent presence and absence at the centrosome, which correlates with dissociation of the corona in prophase and its reformation in late telophase. During telophase, GFP-CP148 formed cytosolic foci, which coalesced and joined the centrosome. This explains the hypertrophic appearance of the corona upon strong overexpression of GFP-CP148. Depletion of CP148 by RNAi caused virtual loss of the corona and disorganization of interphase microtubules. Surprisingly, formation of the mitotic spindle and astral microtubules was unaffected. Thus, microtubule nucleation complexes associate with centrosomal core components through different means during interphase and mitosis. Furthermore, CP148 RNAi caused dispersal of centromeres and altered Sun1 distribution at the nuclear envelope, suggesting a role of CP148 in the linkage between centrosomes and centromeres. Taken together, CP148 is an essential factor for the formation of the centrosomal corona, which in turn is required for centrosome/centromere linkage.  相似文献   

8.
Dynamics of the nuclear envelope at mitosis and during apoptosis   总被引:4,自引:0,他引:4  
The nuclear envelope is a highly dynamic structure that reversibly disassembles and reforms at mitosis. The nuclear envelope also breaks down--irreversibly--during apoptosis, a process essential for development and tissue homeostasis. Analyses of fixed cells, time-lapse, imaging studies of live cells and the development of powerful cell-free extracts derived from gametes or mammalian somatic cells have provided insights on the fate of nuclear envelope proteins during mitosis and apoptosis, and on the mechanisms behind nuclear envelope modifications in these processes. In this review, we discuss evidence leading to our understanding of the dynamics of the nuclear envelope alterations at mitosis and during apoptosis. We also present novel imaging and genetic approaches to the study of nuclear envelope dynamics and function.  相似文献   

9.
Polo-like kinase 1 (Plk1) is a highly conserved serine/threonine kinase that plays critical roles in many cell cycle events, especially in mitosis. In the present study, we identified TTDN1 as a potential interacting partner of Plk1 in yeast two-hybrid screens. Sequence analysis indicates that TTDN1 contains a consensus Plk1-binding motif at its C terminus. TTDN1 colocalizes with Plk1 at the centrosome in mitosis and the midbody during cytokinesis. TTDN1 is phosphorylated by Cdk1 in mitosis, and this is required for its interaction with Plk1. Site-directed mutagenesis indicates that TTDN1 is phosphorylated at multiple residues, including Ser93 and Ser104. Mutation of Thr120 of TTDN1 abolishes its interaction with Plk1, suggesting phosphorylation of Thr120 in the consensus Plk1-binding motif is required for its interaction with Plk1. Overexpression of TTDN1 or its knockdown by siRNA causes multi-polar spindles and multiple nuclei, suggesting that TTDN1 plays a role in regulating mitosis and cytokinesis. Received 27 November 2006; received after revision 4 January 2007; accepted 25 January 2007 Y. Zhang, Y. Tian: These authors contribute equally to this work.  相似文献   

10.
Endocytosis and mitosis are fundamental processes in a cell’s life. Nearly 50 years of research suggest that these processes are linked and that endocytosis is shut down as cells undergo the early stages of mitosis. Precisely how this occurs at the molecular level is an open question. In this review, we summarize the early work characterizing the inhibition of clathrin-mediated endocytosis and discuss recent challenges to this established concept. We also set out four proposed mechanisms for the inhibition: mitotic phosphorylation of endocytic proteins, altered membrane tension, moonlighting of endocytic proteins, and a mitotic spindle-dependent mechanism. Finally, we speculate on the functional consequences of endocytic shutdown during mitosis and where an understanding of the mechanism of inhibition will lead us in the future.  相似文献   

11.
Genomic stability requires error-free chromosome segregation during mitosis. Chromosome congression to the spindle equator precedes chromosome segregation in anaphase and is a hallmark of metazoan mitosis. Here we review the current knowledge and concepts on the processes that underlie chromosome congression, including initial attachment to spindle microtubules, biorientation, and movements, from the perspective of the kinetochore.  相似文献   

12.
We have localized TACC to the microtubule-nucleating centrosomal corona and to microtubule plus ends. Using RNAi we proved that Dictyostelium TACC promotes microtubule growth during interphase and mitosis. For the first time we show in vivo that both TACC and XMAP215 family proteins can be differentially localized to microtubule plus ends during interphase and mitosis and that TACC is mainly required for recruitment of an XMAP215-family protein to interphase microtubule plus ends but not for recruitment to centrosomes and kinetochores. Moreover, we have now a marker to study dynamics and behavior of microtubule plus ends in living Dictyostelium cells. In a combination of live cell imaging of microtubule plus ends and fluorescence recovery after photobleaching (FRAP) experiments of GFP-α-tubulin cells we show that Dictyostelium microtubules are dynamic only in the cell periphery, while they remain stable at the centrosome, which also appears to harbor a dynamic pool of tubulin dimers.  相似文献   

13.
Cultures of Physarum polycephalum incubated with caffeine or theophylline for over 100 min prior to mitosis exhibited mitotic delay proportional to the time of treatment before 100 min. Starved cultures exhibited mitotic delay at times of starvation longer than 180 min and slight stimulation from 100-180 min. Dibutyryl cAMP appeared to accelerate reconstruction of the nucleus following mitosis.  相似文献   

14.
The regulation of cell cycle progression in normal mammalian cells is dependent on the presence of growth factors. In their absence, non-transformed cells will stop dividing and enter the quiescent state (G0). We show here that in Chinese hamster ovary cells, at least two serum-dependent points exist during G1 that lead to different cellular responses. The first point is located immediately after mitosis and is suggested to link with apoptosis. The second point is located late in G1, and probably corresponds with the classic restriction point R. Cells depleted of serum after the first restriction point will not stop randomly in G1 but continue G1 progression until they reach the late restriction point, as marked by translocation of p42MAPkinase (ERK2) to the nucleus.Received 18 September 2003; received after revision 11 December 2003; accepted 19 December 2003  相似文献   

15.
Summary Among the haemocytes ofSarcophaga ruficornis, only the prohaemocytes divide. Injection of phytohaemagglutinin-P induces 100% prohaemocytes to undergo mitosis but does not induce mitosis in other cells. Mitotic stages other than the prophase are apparently very short lived.Acknowledgment. We express our gratitude to the State Council of Scientific and Industrial Research, U.P. for the grant of financial assistance to U.S.S.  相似文献   

16.
U S Srivastava  P Varma 《Experientia》1979,35(11):1457-1458
Among the haemocytes of Sarcophaga ruficornis, only the prohaemocytes divide. Injection of phytohaemagglutinin-P induces 100% prohaemocytes to undergo mitosis but does not induce mitosis in other cells. Mitotic stages other than the prophase are apparently very short lived.  相似文献   

17.
Summary The author reports on the development of two binuclear cells from one PK cell dividing mitotically, which, by its aberrant chromosomes, recalls tripolar mitosis. He believes that this process is not an exception and that it may be used for the explanation of the development of a certain part of binuclear cells frequently found in stabilized strains.  相似文献   

18.
Summary Cultures ofPhysarum polycephalum incubated with caffeine or theophylline for over 100 min prior to mitosis exhibited mitotic delay proportional to the time of treatment before 100 min. Starved cultures exhibited mitotic delay at times of starvation longer than 180 min and slight stimulation from 100–180 min. Dibutyryl cAMP appeared to accelerate reconstruction of the nucleus following mitosis.Acknowledgments. The authors wish to express their appreciation to Dr. Volker Vogt and Dr. Richard Threlfall for helpful discussions, to Kathryn Behrens for able technical assistance and to the European Molecular Biology Organization for a short-term fellowship to J. R. T. during the course of this work. Supported by grant 3.501.75 of the Swiss National Science Foundation.  相似文献   

19.
The cellular functions of clathrin   总被引:3,自引:0,他引:3  
Membranes and proteins are moved around the cell in small vesicles. A protein coat aids the budding of such vesicles from donor membranes. The major type of coat used by the cell is composed of clathrin, a three-legged protein that can form lattice-like coats on membranes destined for trafficking. In this review, I outline what we know about clathrin and discuss some recent advances in understanding the basic biology of this fascinating molecule, which include building a molecular model of a clathrin lattice and discovery of a new function for clathrin that occurs during mitosis. Received 12 December 2005; received after revision 21 March 2006; accepted 29 March 2006  相似文献   

20.
Cell cycle progression is regulated by both intracellular and extracellular control mechanisms. Intracellular controls ensure that cell cycle progression is stopped in response to irregularities such as DNA damage or faulty spindle assembly, whereas extracellular factors may determine cell fate such as differentiation, proliferation or programmed cell death (apoptosis). When extracellular factors bind to receptors at the outside of the cell, signal transduction cascades are activated inside the cell that eventually lead to cellular responses. We have shown previously that MAP kinase (MAPK), one of the proteins involved in several signal transduction processes, is phosphorylated early after mitosis and translocates to the nucleus around the restriction point. The activation of MAPK is independent of cell attachment, but does require the presence of growth factors. Moreover, it appears that in Chinese hamster ovary cells, a transformed cell line, growth factors must be present early in the G1 phase for a nuclear translocation of MAPK and subsequent DNA replication to occur. When growth factors are withdrawn from the medium immediately after mitosis, MAPK is not phosphorylated, cell cycle progression is stopped and cells appear to enter a quiescent state, which may lead to apoptosis. Furthermore, in addition to this growth-factor-regulated decision point in early G1 phase, another growth-factor-sensitive period can be distinguished at the end of the G1 phase. This period is suggested to correlate with the classical restriction point (R) and may be related to cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号