首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
通过在器件复合发光区附近插入空穴阻挡层BCP,制备了一种具有非平衡传输性能的荧光染料掺杂型发光二极管,其结构为ITO/CuPc/NPB/NPB:DCM(5wt%)/BCP/Alq3/LiF/Al,并在不同温度和电压下测量了器件的注入电流随外加磁场的变化(即磁电导效应).实验结果表现为:当磁场处在0~40mT时,该非平衡发光器件的磁电导随磁场的增加而迅速增大(即表现为快变的正磁电导效应).这一实验现象与具有相对平衡传输性能的发光器件中所观测到的磁电导效应一致;当磁场大于40mT时,非平衡发光器件的磁电导随磁场的进一步增加表现为缓慢下降(即缓变的负磁电导效应成分),而平衡器件的磁电导则变为继续缓慢增加(即为缓变的正磁电导效应).本文对非平衡传输掺杂型发光器件的体系特征进行了讨论,并基于三重态激子-电荷(T-Q)反应受外加磁场的影响对上述实验现象进行了定性解释.  相似文献   

2.
制备了DCM染料掺杂的有机电致发光器件ITO/NPB/Alq3: DCM/Alq3/ LiF/Al, 研究了15 K-R.T.(室温)温度范围内, 器件的电致发光随磁场的变化关系(即电致发光的磁效应). 发现电致发光的磁效应由低场(0≤B≤40 mT)效应和高场(B≥ 40 mT)效应两部分组成. 室温下, 对于未掺杂的参考器件, 发光在低场部分随磁场的增加迅速增强, 高场部分随磁场的增加缓慢并逐渐趋于饱和. 而对于掺杂器件, 尽管发光在低场部分随磁场也迅速增强, 但高场部分却在低场增加的基础上出现下降. 器件的注入电流越大, 发光在高场下降越明显. 低温下(T ≤150 K), 尽管未掺杂器件电致发光的磁效应的高场部分也出现减弱趋势, 但掺杂样品的高场部分受温度的影响要远弱于未掺杂样品的结果. 基于掺杂引起的能级陷阱效应, 通过讨论外磁场作用下的三重态激子淬灭过程, 我们对实验结果进行了定性解释.  相似文献   

3.
制备了DCM掺杂层靠近阴极的双发光层有机发光器件ITO/CuPc/NPB/Alq3(发射绿光)/Alq3:DCM(发射红光)/LiF/Al,并在不同温度下测量了该器件和无DCM掺杂的单发光层参考器件的磁电致发光(Magneto-ElectroLuminescence,MEL)和磁电导(Magneto-Conductance,MC).在注入相同电流密度下,发现双发光层器件MEL的高场(B50mT)效应随温度降低呈现先减小后增大的非单调变化,这与单发光层参考器件的单调递增变化明显不同.同时测量了不同温度下的电致发光光谱,发现双发光层器件的533nm和600nm两个特征峰的强度随温度变化出现了此消彼长的现象,表明激子复合区域随温度变化发生了移动.通过分析工作温度对器件各发光层中的三重态激子对间相互作用及载流子迁移率的影响,对双发光层器件中MEL的高场效应随温度的非单调变化进行了定性解释.实验结果进一步验证了在单发光层器件中得到的有机磁效应高场变化的相关结论.  相似文献   

4.
利用5,6,11,12-tetraphenylnaphthacene(Rubrene)中单重态激子分裂的性质(一个单重态激子(S)可以分裂成两个三重态激子(T),S→T+T),本文制备了Rubrene与Bathocuproine(BCP)共混型有机发光二极管(OLEDs),测量了器件电致发光的磁效应(Magneto-Electroluminescence,MEL)及其瞬态电致发光光谱.实验发现,随着Rubrene分子间距的增大(掺杂浓度减小),单重态激子分裂强度逐渐变弱,即Rubrene分子间距对内部激子分裂有调控作用.该调控作用表现在两个方面:第一,MEL的高场上升幅度(-500mT处对应的值)随着掺杂浓度减小而下降,当浓度为20wt%时高场出现下降;第二,在~20mT处MEL的值随着掺杂浓度的减小从负变到正.此外,器件瞬态电致发光光谱在撤去脉冲电压后的快速下降部分在小掺杂浓度时下降变快.通过分析单重态激子分裂与Rubrene分子间距之间的关系,以及磁场对单重态激子分裂的影响,我们对该现象做了定性的讨论.  相似文献   

5.
采用具有单重态激子裂变(Singlet Exciton Fission,即STT过程)的红荧烯(Rubrene)作为发光层制备了有机发光器件,并在不同温度下(15KT300K)研究了器件发光随外加磁场的变化(即Magneto-Electro Luminescence,MEL).实验发现,与不具有STT过程的参考器件相比,Rubrene器件的MEL无论是在线型还是在幅度方面都表现出了新现象:室温下参考器件的MEL主要表现为低磁场下的快速上升和高磁场下缓慢增加直至逐渐饱和的特点,但Rubrene器件MEL的低磁场部分受到很大抑制且其高磁场部分一直增加而没有表现出饱和迹象,其线型也有很大不同;另外,这些特性受温度的影响较大,其光谱随温度的降低还出现了红移.通过对磁场作用下器件的超精细相互作用、STT过程和三重态激子湮灭过程(Triplet-Triplet Annihilation,TTA)以及这些微观过程温度效应的综合分析,认为室温300K下器件的MEL可用超精细相互作用和STT过程来解释,低温15K下器件的MEL则是超精细相互作用与TTA作用叠加的结果.  相似文献   

6.
侯建华  蒋大勇 《科技信息》2012,(33):499+505-I0027,I0033
以铝(Al)为阴极和阳极制备了顶发射有机发光器件。与单独使用三氧化钼(M000或富勒烯(C60)作为空穴注入层相比,利用MoO3/C60双空穴注入层能显著提高器件的性能。表明在Al/MoO3/C60界面处存在较强的偶极作用,极大地降低空穴注入势垒,提高器件性能。  相似文献   

7.
本文制备了一系列基于平面异质结和体异质结的激基复合物发光二极管,在20–300 K温度范围内测量了器件电致发光的磁效应(Magneto-Electroluminescence,MEL).实验发现:在温度较高时,两种不同的异质结器件的MEL呈现出相同的变化趋势,而在低温下(100 K)却表现出截然不同的变化规律.即:在体异质结器件中,器件的MEL曲线始终未呈现出高场下降的现象;而在平面异质结器件中,当温度降为100 K时,其MEL曲线开始出现高场下降的现象,且温度越低,外加偏压越大,下降越明显.本文通过对两类器件的结构和能级排布分析,得出:平面异质结附近容易聚集大量的三重态激基复合物,从而易发生三重态的湮灭过程,在外加磁场下MEL表现出高场下降;而对于体异质结器件,由于形成的三重态激基复合物浓度较小,故难以发生三重态的湮灭过程.本文通过对激基复合物器件发光磁效应的研究,进一步丰富了激基复合物器件中激发态演化的微观机制,并对提高其发光效率也有一定的指导意义.  相似文献   

8.
为研究红荧烯(5,6,11,12-Tetraphenylnaphthacene,Rubrene)掺杂体系中激子的反应过程,向主体材料Rubrene中掺入了1%的客体材料DBP(Tetraphenyldibenzoperiflanthene),制备了掺杂型Rubrene的有机发光器件.实验发现,其电致发光磁效应(Magneto-Electroluminescence,MEL)在室温下呈现出复杂的新特征线型:在外加磁场处于0–27mT范围内MEL随磁场的增加先小幅度上升,在27–200mT随磁场的增加迅速下降,最后200–500mT范围内再次上升.通过分析可知器件内存在3种激子反应过程:单重态-三重态激子淬灭(Singlet-Triplet Annihilation,STA)、三重态激子湮灭(Triplet-Triplet Annihilation,TTA)和单重态激子分裂(Singlet Fission,STT).可通过改变注入电流的大小调节三者的竞争:大注入电流时,器件主要是STA反应和TTA反应;注入电流逐渐减小的过程中,激子反应从以TTA为主逐渐过渡到以STT为主.同时也可通过改变掺杂层的厚度和掺杂层在器件结构中的位置,对这几种反应之间的竞争过程产生重要影响:掺杂层厚度越薄,STT越强,而STA和TTA越弱;掺杂位置越靠近阴极,STA和TTA越强,而STT越弱.这些实验发现不仅可加深对有机发光二级管中激子间相互作用的理解,也为进一步优化器件发光性能提供参考.  相似文献   

9.
以4,4′,4″-三(N-3-甲基苯基-N-苯基氨基)三苯胺(m-MTDATA)为空穴注入层,N,N′-二-(1-萘基)-N,N′-二苯基-1,1′-联苯-4,4′-二胺(NPB)为空穴传输层,4-二氰甲烯基-2-叔丁基-6-(1,1,7,7-四甲基久洛尼定-4-乙烯基)-4H-吡喃(DCJTB)为掺杂小分子染料,三(8-羟基喹啉)铝(Alq3)为电子传输层,采用经紫外臭氧氧化处理的银作为阳极,LiF/Al/Ag为超薄复合阴极制备微腔顶发射红光器件.通过光学模拟,研究光输出耦合层对器件发光光谱的影响.结果表明:当采用60nm的Alq3为光输出耦合层时,在不牺牲器件效率的前提下,器件的光谱角度特性得到极大的改善.  相似文献   

10.
为研究磁场对基于NPBx有机电致绿光器件效率的影响,制备了一组基于NPBx有机电致绿光器件,其结构为ITO/NPBx(50 nm)/Alq3(80 nm)/Li F(0.5 nm)/Al.分别测量了该器件在大小不同的外加磁场条件下的器件效率变化率、电流变化率等特性曲线,其中磁场大小变化范围为0~100 m T.测试出电流的变化率随磁场的增加是正值,表明电流是增加的;随着磁场强度的增加,电流变化率逐渐上升.器件效率的变化率在磁场的作用下均为正值,即效率是增加的.研究结果表明:在电压为6.5 V时,外加磁场达到30 m T时,该器件电流效率增加量达到最大,约为7.4%,达到饱和后开始下降;其他电压下的效率变化情况与其基本一致,达到饱和后呈现下降趋势.  相似文献   

11.
制备了基于N-BDAVBi的高效率双发光层蓝色有机电致发光器件(OLED),器件中将蓝色荧光染料NBDAVBi作为客体发光材料分别掺入主体材料TCTA和TPBi中,器件结构为ITO/m-MTDATA(40 nm)/NPB(10nm)/TCTA:N-BDAVBi(15 nm)/TPBi:N-BDAVBi(15 nm)/TPBi(30 nm)/LiF(0.6 nm)/Al(150 nm),最大电流效率达到8.44 cd/A,CIE色坐标为(0.176,0.314),并且在12 V的电压下,亮度最大达到11 860 cd/m2,分别是单发光层结构器件的1.85倍和1.2倍.器件性能提高主要归因于双发光层扩大了载流子复合区域,主客体间的Forster能量转移.  相似文献   

12.
以浸入沉积的方法在硅纳米线上修饰了金纳米颗粒,并通过电子扫描显微镜(SEM)和X射线荧光分析(XRF)对金纳米粒子修饰的硅纳米线电极表面形貌进行了表征.以修饰后的硅纳米线电极作为工作电极,采用阳极溶出法检测水中痕量铅和铜,考察pH值、富集电位和富集时间对溶出峰的影响,优化出最佳实验条件.在优化的实验条件下,铅Pb2+和铜Cu2+的灵敏度分别为0.649μA/(μg.L-1)和0.177μA/(μg.L-1).检测极限达到0.26μg.L-1和0.67μg.L-1.峰电流与离子浓度在质量浓度25~200μg.L-1的范围内形成良好的线性关系.  相似文献   

13.
利用真空蒸镀的方法,制备了结构为ITO/NPB(20 nm)/MCP(3 nm)/MCP:Firpic(z%,x nm)/TPBi(10nm)/Alq3(30 nm)/Cs2CO3:Ag2O(2 nm,20%)/Al(100 nm)的器件.研究了不同掺杂浓度(z=5,8,10和12)和不同厚度(x=5,10,15,20和25)对器件性能的影响.首先确定MCP:Firpic层的厚度为5 nm,调节掺杂浓度.结果表明当掺杂浓度为10%时,器件的效率和亮度都为最大.驱动电压为8 V时,最大电流效率为6.996 cd/A;驱动电压为15 V时,最大亮度为10 064 cd/m2.在10%的掺杂浓度下,调节MCP:Firpic层的厚度.当厚度为20 nm时,器件的性能较好.驱动电压为13 V时,电流密度为2.248 mA/cm2,效率为10.35 cd/A;驱动电压为21 V时,电流密度为304.16 mA/cm2,亮度为21 950 cd/m2.  相似文献   

14.
随着半导体及电子工艺技术的迅速发展,器件向着小尺度、低电压、低电荷、高集成度迈进,大气中子对航空及地面的电子系统造成的单粒子效应越来越显著.本文采用PHITS2.24蒙特卡罗程序及其事件发生器功能,借助于核反应模型与截面数据,验算了描述器件发生单粒子翻转能力的MBGR参数,并采用大气高能中子能谱,对SRAM器件的单粒子翻转率进行了计算与分析.这为我们今后模拟大气中子产生的各类单粒子效应提供了基本方法,也为将来开展相应的辐照实验提供了理论基础.  相似文献   

15.
在循环水系统设计中采用电解水处理器代替软水器和加药装置,主要考虑电解水处理器是采用电化学的基本原理,不需要添加化学药剂和不产生环境污染,通过直流电解在电极(阳极)和反应室内壁(阴极)附近分别发生氧化反应和还原反应,Ca2+和Mg2+在阴极析出形成固体排除,在阳极附近产生游离氯及臭氧、双氧水等杀菌剂,解决了循环水系统中的结垢和微生物问题,但该产品在国内项目上应用很少,针对这种情况,作者进行了试验和综合研究,证明电解水处理器应用在循环水系统的可行性。  相似文献   

16.
信息技术的快速发展在某种程度上要求有高速度和大容量的非易失存储器.然而,随着晶体管尺度达到其量子极限,传统硅半导体器件的继续集成化发展遇到了瓶颈.因此,人们提出了一系列有潜力成为下一代更具功能性的存储器原型器件,并引起了广泛而持续的研究热潮.本文介绍3种基于新材料和新结构的新型存储原型器件:阻变开关器件、有机自旋阀和多铁隧道结.我们发现通过改变界面态,可将阻变式开关器件的反应速度提高数个量级,达到5ns;在实验上确认了超精细相互作用对自旋阀效应的影响;利用多铁隧道结实现了室温下的四重阻态存储.基于自旋、电荷相关信息存储的原理和实验结果,我们对这3种过渡金属氧化物器件目前还存在的问题及未来的应用前景进行了分析和讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号