首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
高阶贝塞尔-高斯光束的自重建特性   总被引:2,自引:0,他引:2  
由汉克尔波理论分析了贝塞尔(Bessel)光束的形成原理,很好地解释了零阶和高阶Bessel光束的自重建特性.利用衍射积分理论和柯林斯公式条件下的传输模型数值模拟了一阶贝塞尔-高斯(Bessel-Gauss)光束经过轴上圆形障碍物后的光强分布特性.结果表明,高阶Bessel-Gauss光束也具有零阶Bessel光束类似的自重建特性.实验上采用轴棱锥聚焦涡旋光束获得一阶Bessel-Gauss光束,然后通过轴上圆形障碍物、轴上和离轴正方形障碍物,验证了高阶Bessel-Gauss光束的自重建特性.理论模拟和实验结果相吻合.  相似文献   

2.
本文主要从惠更斯-菲涅尔衍射积分出发推导了无衍射光束的轴上光强和最大准直距离的计算公式,测量了平行光通过轴棱锥后产生的不同传输距离的无衍射光束的光强情况,讨论了不同的棱角的轴棱锥、不同的光阑半径对最大准直距离的影响情况。实验结果显示,当激光光束经过轴棱锥转换后在最大准直距离范围内光强分布近似为贝塞尔分布,符合无衍射光束的特性,由衍射积分理论的数值模拟和几何光学近似得到的无衍射光束的最大准直距离以及棱角与光阑半径对最大准直距离的影响和实验结果基本吻合。  相似文献   

3.
基于空间域中的广义惠更斯-菲涅耳衍射积分理论,导出Bessel光束通过柱透镜光强分布表达式,利用计算机模拟不同传播距离处的截面光强分布.利用轴棱锥产生Bessel光束,光束经过焦距为130 mm的柱透镜,用CCD拍摄柱透镜的后不同传播距离的处光强分布.结果表明:实验所得结果与理论模拟吻合,Bessel光束经柱透镜后将产生唇状焦散光束.  相似文献   

4.
基于Hankel波理论分析了非相干光源产生高阶Bessel光束的自再现的可能性,利用交叉谱密度公式模拟了非相干绿光LED光源产生的一阶Bessel光束经过轴上圆形障碍物后的自再现光场分布,实验上通过由绿光LED发出的光场经过螺旋相位板和轴棱锥后产生一阶Bessel光束,并在光轴上放置圆形障碍物、方形障碍物来验证非相干光源产生的高阶Bessel光束的自再现特性,实验结果和理论模拟基本吻合,研究结果对于利用非相干光源实现多点光捕获和微粒操控有重要参考价值.  相似文献   

5.
瞬态声场特性的时域边界元分析和实验研究   总被引:2,自引:0,他引:2  
本文利用时域边界元技术从理论和实验上讨论结构振动表面的声辐射特性.由于此法是在时间域内分析声振关系,既可以计算稳态声场特性,又可以计算瞬态声辐射规律,为工程实际问题的理论研究提供一种新的声场预报手段.  相似文献   

6.
无衍射J0光束的理论分析   总被引:2,自引:2,他引:2  
由同一锥面上的平面波叠加,给出无衍射第一类零阶贝塞尔光束(无衍射J0光束)的解.利用衍射积分理论,导出平面波通过轴棱锥后的光场分布.数值模拟轴上光强和横截面光强的分布,结果证明无衍射光束的最大准直距离的模拟结果与几何光学近似完全吻合.同时,讨论光束半径和轴棱锥棱角对最大准直距离的影响.  相似文献   

7.
依据薄膜理论,分析了一种具体形状、径向极化压电圆管换能器的振动特性,在此基础上推导出不同振态下的径长位移特性以及集中参数等效电路,用有限元法分析了径长振动模态,得出谐振和反谐振频率.通过有限元模态分析表明,理论值与模拟值符合的很好,这对管状换能器的工程设计具有参考价值.  相似文献   

8.
采用单色LED光源得到较理想的近似无衍射Bessel光束.文中从LED光源的时空相干性出发分析用单色LED灯珠产生Bessel光束的可能性,利用光阑提高光场的空间相干性得于实现.设计实验光学系统,让LED光源发出的光经过一套光学系统后透过轴棱锥,得到了近似Bessel光束,光束中心亮斑大小及最大无衍射距离均与理论计算所得相符,证明用LED光源也能够产生较理想的近似Bessel光束.最后讨论了光阑孔径对所产生Bessel光束质量的影响,发现光阑孔径增大时所得Bessel光束强度变大但截面光强明暗对比度下降.  相似文献   

9.
利用透镜聚焦法与障碍物重建法实现无衍射光束的自重建,对无衍射光束自重建的传播特性及其光强分布变化进行数值模拟.结果表明,利用聚焦透镜与障碍物都可以使无衍射光重建,但重建后的无衍射光束的中心光斑的光强都较重建前弱,且光斑半径较大,亮环也较稀疏.利用聚焦透镜实现重建,只要加另一透镜进行矫正,便可得到光束质量非常好的无衍射光,且无衍射距离较重建前更长.利用Bessel光经障碍物重建,无需借助额外的实验装置,便可方便地对粒子进行捕获,而且重建后的无衍射光经过障碍物可再重建.  相似文献   

10.
介绍一种输出无衍射光束的金属环状波导激光器,以横向电(TE)模为例详细分析了金属环状波导谐振腔内的电磁场分布,耦合损耗,输出光束近、远场特性.通过几何光学分析了产生无衍射光的原理,计算了无衍射光的相关参数.由衍射积分理论分析和模拟了输出光束的光强分布特性,所得分析结果与几何光学分析是一致的.结果表明,该器件能够输出无衍射光束.  相似文献   

11.
介绍非相干光产生无衍射Bessel光束的方法及研究现状,对比透过轴棱锥和环缝装置产生白光无衍射光,以及小尺寸全光纤装置产生白光无衍射光束的方法.研究表明:采用相干光源和非相干光源都可以产生Bessel光束,也都具有无衍射和自重建的特性;非相干光源产生Bessel光束具有对光源要求低,单个光源可产生多种波长的无衍射光等优点.  相似文献   

12.
基于2×2交叉谱密度矩阵的传输规律及部分相干光的相干与偏振的统一理论,研究了部分相干径向偏振光束在自由空间中的传输特性.理论分析和数值计算表明:部分相干径向偏振光束在传输过程中,其光强、斯托克斯参数及偏振度都会发生变化,光强由空心面包圈型逐渐变为实心,该现象与传输距离以及相干长度有关.同时在传输过程中,斯托克斯参数及偏振度的分布也与传输距离及相干长度有关,随着传输距离的增大,斯托克斯参数S1,S2的模值减小,偏振度随半径的分布曲线斜率逐渐降低,传输距离一定时,随着相干长度的增大,斯托克斯参数S1,S2的模值会随之增大,其有效分布区域向坐标轴收缩,偏振度随半径的分布曲线的斜率会随之增大.  相似文献   

13.
基于矢量瑞利-索末菲衍射积分,研究了离轴径向偏振高斯光束的非傍轴传输特性,推导了离轴径向偏振高斯光束在自由空间中非傍轴传输的解析表达式,并与傍轴的情况进行了对比.研究表明:f参数、离轴系数和传输距离对径向偏振高斯光束的非傍轴传输特性有着重要的影响,而且,传输距离较远,离轴径向偏振光束的光斑向光轴靠拢,表现出较强的离轴修复能力.这些结论在多束离轴激光束进行光束合成和光束整形的研究中具有重要意义.  相似文献   

14.
为了研究空间可变波片偏振调制生成矢量光束的方法,本文借助琼斯矢量和琼斯矩阵较深入地分析了任意阶拉盖尔-高斯螺旋光束通过空间偏振转换器件生成矢量光束的过程,并根据数学模型对矢量光束的远场强度分布进行了数值仿真.仿真结果表明:线偏振和圆偏振的基模光束可分别通过空间半波片和空间四分之一波片转化生成矢量光束,且随着空间波片阶数的提高,输出光束暗核逐渐增大;空间波片对螺旋光束的作用可以等效为两个正交圆偏振的螺旋分量的叠加,通过轨道角动量偏振检测仿真,证实了该方法的正确性.  相似文献   

15.
组合梁的应力分析与实验   总被引:7,自引:1,他引:7  
为了精确分析叠梁、加楔块叠梁和整梁的承载能力,采用温克尔假设法和电测实验技术,完成了矩形截面叠梁受力弯曲时的模型简化理论计算与实测分析。研究了同截面、同材料的叠梁、加楔块叠梁的应力分布、内力变化和承载能力。理论和实验均表明:叠梁的应力最大,加楔块叠梁的应力次之,整梁的应力最小。  相似文献   

16.
通过二波耦合实验研究了不同偏振态的两束写入光在向列相液晶中形成光栅的衍射现象。实验发现,水平偏振态(P-P偏振)照射时形成的光栅具有比竖直偏振态(S-S偏振)照射时大得多的能量耦合,且能量耦合方向完全相反。更重要的是,当光栅形成之后改变其中一束光的偏振方向时,透射光和衍射光的强度会随着其中一束光的偏振态的改变而变化。可见,光的偏振态在决定NLC分子非线性取向时是一个非常重要的参数,在以后的光电子功能器件应用中与偏振光相关的分子取向产生的非线性光学现象将会非常有用。  相似文献   

17.
利用Richards-Wolf矢量衍射积分模型,推导双环角向偏振光束经过环状高数值孔径透镜聚焦后聚焦区域的偏振特性,并用数值计算分析各相关参数的取值变化对焦面光斑的偏振分布的影响.研究表明:双环角向偏振光束经过环状高数值孔径透镜聚焦以后,其光斑内环的偏振方向发生改变;通过控制各相关参数的取值,可以控制聚焦光斑的偏振分布,形成一种可控的偏振开关.  相似文献   

18.
研究了用于接收卫星直播电视的径向缝平面天线的分析和设计方法,以及该天线在Ku波段能够辐射线极化锐方向性波束。给出了旋转对称行波激励实现线极化的缝排列的方法。  相似文献   

19.
主动方式产生近似无衍射光束的新技术   总被引:1,自引:0,他引:1  
介绍几种主动式产生近似无衍射光的方法,并用谐振腔理论进行分析和模拟.可以发现,利用轴棱锥设计的谐振腔具有结构简单、转换效率高等特点;而采用腔内振幅滤波的谐振腔,则不需要复杂的光学元件和特别的准直技术;用LD泵浦的Nd∶YAG激光器输出近似无衍射光,可以有效地提高泵浦光效率和激光输出能量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号