首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
文章对投放带有免疫力的蚊子的单疟疾模型和2种疟疾模型利用再生矩阵法求得基本再生数,分别讨论它们的无病平衡点、正平衡点的存在性和稳定性,并且探讨了疟原虫在带菌者和寄主内永久共存的条件.  相似文献   

3.
4.
The late blood stages of the human malaria parasite, Plasmodium falciparum, carry a major surface antigen, p190, of molecular weight (Mr) 190,000. This antigenically variable protein is actively processed, first as the parasite matures and again when it is released into the blood stream and invades a new erythrocyte to initiate a cycle of growth. It elicits a strong immune response in man; all tested adult sera from endemic areas have antibodies against this protein. Our evidence indicates that purified p190 can alter the course of parasitaemia in monkeys with falciparum malaria. We have also succeeded in cloning part of the gene for p190 and expressing it in Escherichia coli. To this end we have developed a new technique, antibody select, which greatly simplifies final identification of expressing clones.  相似文献   

5.
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.  相似文献   

6.
I A Hope  R Hall  D L Simmons  J E Hyde  J G Scaife 《Nature》1984,308(5955):191-194
Malaria parasites (Plasmodium spp.) show a complex pattern of development in the mammalian host and many studies support the view that the surface of the sporozoite, injected by the mosquito, has no antigens in common with the erythrocytic stage of development. For example, immunization with the erythrocytic parasites generates antisera with negligible titre by indirect immunofluorescence to the sporozoite surface. Although monoclonal antibodies prepared against erythrocytic stages were reported to show cross-reaction to the sporozoite stage, this appeared to be due to cytoplasmic antigens exposed by the method of sporozoite preparation, and in Plasmodium knowlesi, a cDNA clone coding for the circumsporozoite antigen, the major protein of the sporozoite surface, showed no hydridization to mRNA isolated from the erythrocytic stages. Here, however, we present evidence for an antigenic determinant shared by the sporozoite surface and the erythrocytic stages of the human malaria parasite, P. falciparum. Moreover, our studies show that the antigen(s) elicit a strong immune response in man.  相似文献   

7.
8.
As the malaria parasite, Plasmodium falciparum, grows within its host erythrocyte it induces an increase in the permeability of the erythrocyte membrane to a range of low-molecular-mass solutes, including Na+ and K+ (ref. 1). This results in a progressive increase in the concentration of Na+ in the erythrocyte cytosol. The parasite cytosol has a relatively low Na+ concentration and there is therefore a large inward Na+ gradient across the parasite plasma membrane. Here we show that the parasite exploits the Na+ electrochemical gradient to energize the uptake of inorganic phosphate (P(i)), an essential nutrient. P(i) was taken up into the intracellular parasite by a Na+-dependent transporter, with a stoichiometry of 2Na+:1P(i) and with an apparent preference for the monovalent over the divalent form of P(i). A P(i) transporter (PfPiT) belonging to the PiT family was cloned from the parasite and localized to the parasite surface. Expression of PfPiT in Xenopus oocytes resulted in Na+-dependent P(i) uptake with characteristics similar to those observed for P(i) uptake in the parasite. This study provides new insight into the significance of the malaria-parasite-induced alteration of the ionic composition of its host cell.  相似文献   

9.
The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.  相似文献   

10.
Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.  相似文献   

11.
P G Harte  N Rogers  G A Targett 《Nature》1985,316(6025):258-259
Malaria vaccination with preparations of microgametes has been shown to inhibit transmission of Plasmodium spp. to the mosquito vectors of avian, rodent and simian parasites. This transmission-blocking immunity results from the induction of microgamete-agglutinating antibodies in the vaccinated host which, when ingested in a mosquito blood meal, react with exflagellating microgametes in the midgut to prevent fertilization and oocyst development. Here we have passively transferred the immunity with gamete-specific monoclonal antibodies raised against the rodent malaria parasite Plasmodium yoelii nigeriensis, and an IgG2a isotype monoclonal antibody from a hybridoma cell line, PYG-1, has been used to identify the target antigens on the gametes and to affinity-purify sufficient quantities of specific gamete antigen to facilitate vaccination studies. This transmission-blocking monoclonal antibody immunoprecipitated microgamete antigens of apparent relative molecular mass (Mr), 67K (67,000), 59K, 57K, 42K and 35K. Immunization of mice with these proteins before infection and mosquito feeding led to a 85-99.7% reduction in transmission to the mosquito vector; vaccination via intravenous or intramuscular routes was equally effective and did not require an adjuvant.  相似文献   

12.
Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.  相似文献   

13.
14.
J V Ravetch  R Feder  A Pavlovec  G Blobel 《Nature》1984,312(5995):616-620
The nucleotide sequence of a complete genomic clone for the histidine-rich protein of Plasmodium lophurae has been determined. The deduced amino acid sequence of the mature protein shows numerous tandemly repeated units preceded by a signal and a pro peptide. The gene is interrupted by an intron with a separate exon coding for the signal peptide. The signal peptide-encoding exon detects multiple cross-hybridizing sequences in the parasite genome.  相似文献   

15.
Desai SA  Bezrukov SM  Zimmerberg J 《Nature》2000,406(6799):1001-1005
Growth of the malaria parasite in human red blood cells (RBCs) is accompanied by an increased uptake of many solutes including anions, sugars, purines, amino acids and organic cations. Although the pharmacological properties and selectivity of this uptake suggest that a chloride channel is involved, the precise mechanism has not been identified. Moreover, the location of this uptake in the infected RBC is unknown because tracer studies are complicated by possible uptake through fluid-phase pinocytosis or membranous ducts. Here we have studied the permeability of infected RBCs using the whole-cell voltage-clamp method. With this method, uninfected RBCs had ohmic whole-cell conductances of less than 100 pS, consistent with their low tracer permeabilities. In contrast, trophozoite-infected RBCs exhibited voltage-dependent, non-saturating currents that were 150-fold larger, predominantly carried by anions and abruptly abolished by channel blockers. Patch-clamp measurements and spectral analysis confirmed that a small (< 10 pS) ion channel on the infected RBC surface, present at about 1,000 copies per cell, is responsible for these currents. Because its pharmacological properties and substrate selectivities match those seen with tracer studies, this channel accounts for the increased uptake of small solutes in infected RBCs. The surface location of this new channel and its permeability to organic solutes needed for parasite growth indicate that it may have a primary role in a sequential diffusive pathway for parasite nutrient acquisition.  相似文献   

16.
17.
18.
Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria   总被引:20,自引:0,他引:20  
Schofield L  Hewitt MC  Evans K  Siomos MA  Seeberger PH 《Nature》2002,418(6899):785-789
The malaria parasite Plasmodium falciparum infects 5-10% of the world's population and kills two million people annually. Fatalities are thought to result in part from pathological reactions initiated by a malarial toxin. Glycosylphosphatidylinositol (GPI) originating from the parasite has the properties predicted of a toxin; however, a requirement for toxins in general and GPI in particular in malarial pathogenesis and fatality remains unproven. As anti-toxic vaccines can be highly effective public health tools, we sought to determine whether anti-GPI vaccination could prevent pathology and fatalities in the Plasmodium berghei/rodent model of severe malaria. The P. falciparum GPI glycan of the sequence NH(2)-CH(2)-CH(2)-PO(4)-(Man alpha 1-2)6Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcNH(2)alpha 1-6myo-inositol-1,2-cyclic-phosphate was chemically synthesized, conjugated to carriers, and used to immunize mice. Recipients were substantially protected against malarial acidosis, pulmonary oedema, cerebral syndrome and fatality. Anti-GPI antibodies neutralized pro-inflammatory activity by P. falciparum in vitro. Thus, we show that GPI is a significant pro-inflammatory endotoxin of parasitic origin, and that several disease parameters in malarious mice are toxin-dependent. GPI may contribute to pathogenesis and fatalities in humans. Synthetic GPI is therefore a prototype carbohydrate anti-toxic vaccine against malaria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号