首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geological characteristics of ultrahigh-pressure (UHP) metamorphic belts formed by deep subduction of oceanic crust are summarized in this paper. Oceanic-type UHP metamorphic belt is characterized by its protolithlc assemblage of typical oceanic crust, the peak metamorphic temperature 〈600℃, P-T path undergoing blueschist facies during prograde and retrograde metamorphic evolution, reepectively, with low geothermal gradient of cold subduction. The further study of oceanic-type UHP metamorphic belt is very significant for constructing metamorphic reaction series of cold subduction zone, for understanding how aqueous fluids were transported into deep mantle and for classifying the types of UHP metamorphism in cold subduction zone. The uplift and exhumation mechanism of oceanic UHP metamorphic rocks is one of the most challenging problems in the study of UHP metamorphism, which is very important for understanding the geodynamic mechanism of solid Earth. As a traveler eubducted into the mantle depth end then uplifted to the surface, oceanic-type UHP metamorphic belts witness the bulk process from the subduction to exhumation and is an ideal target to study the geochemical behavior end cycling of elements in subduction zones. The tectonic evolution of one convergent orogenic belt can be usually divided into two stages of oceanic subduction and followed continental subduction and collision, and the two best-established examples of orogenic belts are Alpa and Himalaya. Therefore, the study of oceanic-type UHP metamorphic belt is the frontier of the current plate tectonic theory. As two case studies, the current status and existing problems of oceanic-type UHP metamorphic belts in Southwest Tianshan and North Qaidam, NW China, are reviewed in this paper.  相似文献   

2.
Laboratory experiments and thermal models predic that lawsonite-bearing eclogite should be the dominan rock types for typical oceanic subduction zone[1,2] However, eclogite containing unaltered lawsonite is rare in nature and has been described only from …  相似文献   

3.
西秦岭光头山花岗岩锆石U-Pb年代学及其地质意义   总被引:9,自引:0,他引:9  
光头山花岗岩体出露于勉略缝合带北侧, 主要由英云闪长岩和二长花岗岩组成。英云闪长岩表现为片麻状构造, 局部英云闪长岩糜棱岩化形成花岗质糜棱岩。而二长花岗岩在糜棱岩带形成之后侵位, 含有少量的石榴石,弱的片麻状到块状构造。LA-ICPMS 锆石原位U-Pb同位素定年结果表明, 光头山岩体为两个阶段侵位, 糜棱岩化英云闪长岩( 样品GT18-01)的侵位结晶年龄是221±6Ma, 而二长花岗岩(样品GT11-01)的结晶年龄是199±4Ma,代表了晚期二长花岗岩形成的时代。结合区域构造背景和前人研究的地球化学特征, 早期的英云闪长岩可能在勉略洋盆闭合前的岛弧发育阶段侵位, 代表了洋壳俯冲的弧岩浆活动的产物。然后扬子地台与秦岭微陆块拼合, 形成勉略缝合带。约199Ma秦岭主造山期同碰撞岩浆活动形成了晚期(石榴石)二长花岗岩。因此, 勉略洋盆闭合和勉略缝合带形成时期大约为221~199Ma 。  相似文献   

4.
The Jiugequan ophiolite is one of the representative ophiolite fragments in the Early Paleozoic orogenic belt of the North Qilian Mountain. It has been drawn much attention and extensively studied in recent years. In this study, ion microprobe (SHRIMP) U-Pb dating was carried out for zircons from isotropic gabbro from the Jiugequan ophiolite. Eighteen analyses yield a relatively consistent apparent 206Pb/238U ages from 480 to 508 Ma with a weighted mean age of 490±5 Ma (MSWD=1.06), which is believed to be the crystallization age of the gabbro and thus the forming age of the Jiugequan ophiolite. Major and trace element geochemical study indicates that the diabase-basalts from the Jiugequan ophiolite have N-MORB and E-MORB characteristics with some subduction-related signatures. The petrological, geochemical and chronological data enable us to conclude that the Jiugequan ophiolite is most likely to be formed at a spreading center of back-arc basin during the early Ordovician, while the ancient Qilian oceanic plate subducted northwards. The acquisition of forming age and determination of tectonic setting for Jiugequan ophiolite provide significant constraints on the evolution of intra-oceanic subduction system in the North Qilian orogenic belt during the Early Paleozoic era.  相似文献   

5.
The early Jurassic intrusive complex is chiefly made of monzodioritic porphyry in northern Anhui and northern Jiangsu, which emplaced in 191 Ma. The intrusive complexes contain a lot of eclogite inclusions which belong to eclogite and garnet-pyroxenite. The inclusions had undergone eclogite facies high-pressure metamorphism and amphibolite facies retrogressive metamorphism. The garnets in eclogite inclusions are mainly almandine varieties and clinopyroxenes are omphacite and augite. The mineral assemblage and P-T estimation results show that P-T conditions of eclogite facies metamorphism and amphibolite facies retrogressive metamorphism are over 1.2—1.5 GPa, 709—861℃ and 0.7—1.03 GPa, 666—738℃, respectively. The discovery of the highpressure xenoliths not only is of important significance to understand the composition and structure of deep crust in southern edge of North China Platform, but also can be of important influence on realizing the subduction-collision-exhumation evolutional process of the DabieSulu ultrahigh-pressure (UHP) metamorphic belt.  相似文献   

6.
The geochronological study on ophiolites is of great interest due to its tectonic significance. Previous studies have shown that ophiolites can form in various tectonic settings including middle ocean ridge, island arc, forearc and backarc basins; most of them are found in the suprasubduction zone[1,2]. Although the hypothesis that high SiO2 and low K2O granitoid rocks in ophiolites are produced by the fractional crystallization of mafic magma has been proved by experimental simulations[3,4],…  相似文献   

7.
Garnets in ultrahigh pressure (UHP) eclogites from Bixiling in Dabieshan were investigated by Fourier transform infrared spectrometer (FTIR). The results demonstrate that all garnets contain structural water which occurs as hydroxyl (OH), with contents ranging from 164 to 2034 ppm (H2O wt.) and mostly higher than 500 ppm. Like omphacite which is another major OH-rich mineral in eclogites, garnet is an important carrier that can recycle the surface water into deep mantles. Heterogeneity of water in garnets exists not only among different samples of the same outcrop (~150 m), but also among different crystals of the same sample (~1 cm). This indicates that the mobility of fluids during UHP metamorphism is very limited (possibly on centimeter scales), and that both subduction and exhumation processes of UHP rocks are very fast.  相似文献   

8.
秦岭北缘巨型陆内俯冲带的深部物理状态   总被引:1,自引:1,他引:0  
秦岭造山带是一个复合型大陆造山带。燕山末期——喜马拉雅初期由于华北板块相对于秦岭造山带的俯冲,在秦岭北缘形成巨型陆内俯冲带。反射地震剖面揭示该带为一向南倾斜的强反射波组带,并且在两侧显示出明显的差异;大地电磁测深剖面中该带表现为略向南倾的低阻带。南侧为高阻体,北侧为多层结构;流变学特征揭示,该俯冲带南部相似于造山带的核带,北部则相同于中、新生代的大陆汇聚带,充分证明了秦岭北缘巨型陆内俯冲带的存在。  相似文献   

9.
Evolution of the Archaean crust by delamination and shallow subduction   总被引:12,自引:0,他引:12  
Foley SF  Buhre S  Jacob DE 《Nature》2003,421(6920):249-252
The Archaean oceanic crust was probably thicker than present-day oceanic crust owing to higher heat flow and thus higher degrees of melting at mid-ocean ridges. These conditions would also have led to a different bulk composition of oceanic crust in the early Archaean, that would probably have consisted of magnesium-rich picrite (with variably differentiated portions made up of basalt, gabbro, ultramafic cumulates and picrite). It is unclear whether these differences would have influenced crustal subduction and recycling processes, as experiments that have investigated the metamorphic reactions that take place during subduction have to date considered only modern mid-ocean-ridge basalts. Here we present data from high-pressure experiments that show that metamorphism of ultramafic cumulates and picrites produces pyroxenites, which we infer would have delaminated and melted to produce basaltic rocks, rather than continental crust as has previously been thought. Instead, the formation of continental crust requires subduction and melting of garnet-amphibolite--formed only in the upper regions of oceanic crust--which is thought to have first occurred on a large scale during subduction in the late Archaean. We deduce from this that shallow subduction and recycling of oceanic crust took place in the early Archaean, and that this would have resulted in strong depletion of only a thin layer of the uppermost mantle.The misfit between geochemical depletion models and geophysical models for mantle convection (which include deep subduction) might therefore be explained by continuous deepening of this depleted layer through geological time.  相似文献   

10.
The granodiorite-tonalite rock occurred in ophiolitic melange was discovered in Buqingshan area, Qinghai Province. Its Rb-Sr isochron age is 578.15 ± 54.4 Ma which belongs to Early Paleozoic. The rock, belonging to calcic-alkaline series, has the features of island-arc granite, which hints that oceanic crust subduction and island-arc magmatism occurred in this area in Early Paleozoic. This discovery is of great significance to recognize the tectonic framework and evolution of this area even as far as the Central Orogenic Belt.  相似文献   

11.
The studies of continental deep subduction and ultrahigh-pressure metamorphism have not only promoted the development of solid earth science in China, but also provided an excellent opportunity to advance the plate tectonics theory. In view of the nature of subducted crust, two types of subduction and collision have been respectively recognized in nature. On one hand, the crustal subduction occurs due to underflow of either oceanic crust (Pacific type) or continental crust (Alpine type). On the other hand, the continental collision proceeds by arc-continent collision (Himalaya-Tibet type) or continent-continent collision (Dabie-Sulu type). The key issues in the future study of continental dynamics are the chemical changes and differential exhumation in continental deep subduction zones, and the temporal-spatial transition from oceanic subduction to continental subduction.  相似文献   

12.
The study of continental deep-subduction has been one of the forefront and core subjects to advance the plate tectonics theory in the twenty-first century. The Dabie-Sulu orogenic belt in China crops out the largest lithotectonic unit containing ultrahigh-pressure metamorphic rocks in the world. Much of our understanding of the world's most enigmatic processes in continental deep-subduction zones has been deduced from various records in the Dabie-Sulu rocks. By taking these rocks as the natural laboratory, earth scientists have made seminal contributions to understanding of ultrahigh-pressure metamorphism and continental collision. This paper outlines twelve aspects of outstanding progress, including spatial distribution of the UHP metamorphic rocks, timing of the UHP metamorphism, timescale of the UHP metamorphism, the protolith nature of deeply subducted continental crust, subduction erosion and crustal detachment during continental collision, the possible depths of continental subduction, fluid activity in the continental deep-subduction zone, partial melting during continental collision, element mobility in continental deep-subduction zone, recycling of subducted continental crust, geodynamic mechanism of postcollisional magmatism, and lithospheric architecture of collision orogen. Some intriguing questions and directions are also proposed for future studies.  相似文献   

13.
The basic granulite of the Altay orogenic belt occurs as tectonic lens in the Devonian medium- to lower-grade metamorphic beds through fault contact. The Altay granulite (AG) is an amphibole plagioclase two-pyroxene granulite and is mainly composed of two pyroxenes, plagioclase, amphibole and biotite. Its melano-minerals are rich in Mg/(Mg Fe^2 ),and its amphibole and biotite are rich in TiO2. The AG is rich in Mg/(Mg Fe^2 ), Al2O3 and depletion of U, Th and Rbcontents. The AG has moderate ∑REE and LREE-enriched with weak positive Eu anomaly. The AG shows island-arc pattern with negative Nb, P and Ti anomalies, reflecting that formation of the AG may be associated with subduction. Geochemical and mineral composition data reflect that the protolith of the AG is calc-alkaline basalt and formed by granulite facies metamorphism having peak P-T conditions of 750℃-780℃ and 0.6-0.7 Gpa. The AG formation underwent two stages was suggested. In the early stage of oceanic crustal subduction, calc-alkaline basalt with island-arc environment underwent granulite facies metamorphism to form the AG in deep crust, and in the late stage, the AG was thrust into the upper crust.  相似文献   

14.
Fluid activity during exhumation of deep-subducted continental plate   总被引:9,自引:0,他引:9  
It is well known that a great deal of fluid wasreleased during subduction of oceanic crust, resulting in arcmagmatism, quartz veining and metamorphic mineralizationof syn-subduction. In contrast, the process of continentalsubduction is characterized by the relative lack of fluid andthus no arc magmatism has been found so far. During exhu-mation of deep-subducted continental crust, nevertheless,significant amounts of aqueous fluid became available fromthe decomposition of hydrous minerals, the decrepitation ofprimary fluid inclusions, and the exsolution of structuralhydroxyls. This kind of metamorphic fluid has recently at-tracted widespread interests and thus been one of the mostimportant targets in deciphering the geological processesconcerning metamorphism, magmatism and mineralizationin collisional orogens. A large number of studies inlvolvingstable isotopes, fluid inclusions and petrological phase rela-tionships have been accomplished in past a few years withrespect to the mobility and amount of met  相似文献   

15.
The northern margin of the North China Craton (NCC), located between the Paleo-Asian Ocean tectonic region on the north and the NCC on the south, is a key region for studying the tectonic evolution of NCC. A Pre-cambrian retrograded eclogite (2500 Ma or 1800 Ma) was reported in Baimashi near Hengshan Mountain in the NCC, which is characterized by the vermicular symplec-tite of diopside and plagioclase with absence of ompha-cite[1,2]. In Hongqiyingzi Group from the middle part of the …  相似文献   

16.
中国新疆北部奥陶—志留系岩石组合的古构造、古地理意义   总被引:32,自引:0,他引:32  
近年的研究结果表明,在准噶尔盆地周边地区存在着几乎连续分布的早古生代造山带,这个事实有可能改变历来只强调北疆晚古生代造山作用的传统认识。震旦纪是准噶尔及其相邻古陆裂解的开始阶段,经寒武纪至早奥陶世,古洋已发展到最大规模。在区域性古陆裂解和伸展的背景下,推测准噶尔古陆经常位于海平面以下。晚奥陶世北疆的古洋开始收缩,古陆缘区转化成活动陆缘,准噶尔古陆先后与伊犁古陆和西伯利亚古陆汇聚撞造山,在这两条早古生代造山带的近准噶尔古陆一侧,可能发育晚奥陶世至早、中志留世的弧前或弧后盆地和前陆拗陷。  相似文献   

17.
The basic granulite, which is considered to be the MORE based on geochemistry and isotopic characteristics[1], has been discovered recently as the enclaves in the Yingjiang island-arc magmatic suite on the border of Burma and west Yunnan, east of Myitkyina suture in the eastern Burma. The laser micro-area 40Ar-39Ar technique is used to date the age of garnet and cliopyroxene that is the result of the early metamorphic event. The isochron outcome is -74.4 Ma which is induced to be the age of the suduction event of the Myitkyina oceanic crust on the basis of the Cenozoic lithosphere tectonic evolution, tectonic thermal events and the age of deformation and metamorphism. The discovery of the high-grade or high-pressure metamophic rocks in the island-arc magmatic suite by the way of studying its P-T-t paths can provide a good way to study the age and process of oceanic crust subduction, slab break-off, metamorphic terrain exhumation and the evolution of paleoocean basin.  相似文献   

18.
Some eclogites and the related high-P metamorphic belt have been found for the first time from the Tongbai Mountains, Henan Province, where the eclogites and their probable retrogressive products ——garnet amphibolites——occur as lenses in mica-schists. The fresh eclogites comprise garnet, omphacite, quartz, rutile, phengite, barroisite, etc. The compositional features of garnet and available geothermobarometers indicated that the eclogites belong to the low-T type. The mica-schists contain phengite, quartz, garnet and rutile that are also attributed to high-P assemblage. The eclogites and related high-P belt probably belong to the Early Paleozoic in age, which is distinct from the Indosinian Dabie high- and ultrahigh-P metamorphic belt.  相似文献   

19.
产于福建明溪的石榴石有两种类型 .一种为紫红色 ,具有主波长 5 85~ 5 88nm ,饱和度 0 .5 6 9~ 0 .6 2 9,折射率 1.74,密度 3.6 5~ 3.78g/cm3;另一种为褐红色 ,主波长 5 95~ 6 0 0nm ,饱和度 0 .86 6~ 0 .939,折射率1.75~ 1.76 ,密度 >3.8g/cm3.在RI -D图上 ,前者属镁铝榴石 ,而褐红色的石榴石落在铁铝榴石—镁铝榴石区域内 .明溪石榴石含有特征的钉状包裹体 .电子探针分析表明 ,紫红色的石榴石中含有较高的Cr,而褐红色的石榴石中则富含Fe和Ti.文章还探讨了明溪石榴石的吸收光谱特点及颜色成因 .  相似文献   

20.
为了查明兴蒙造山带西段二连?满都拉裂陷盆地的充填过程以及其中火山?沉积岩系的时空分布, 对西里庙组开展地层层序和同位素年代学研究, 探讨盆地形成的构造背景。实测剖面查明, 二叠纪西里庙组地层可分为3段, 上段和下段为晶屑凝灰岩及流纹质岩屑晶屑凝灰岩, 中段为暗色沉积岩, 构成独特的火山?沉积岩系。上段流纹质凝灰岩的锆石206Pb/238U年龄为282±2 Ma, 代表形成年龄; 中段碎屑岩的两组锆石年龄峰值分别为304 Ma和450 Ma, 另有1颗锆石的年龄为870 Ma, 分别代表最大沉积年龄、早古生代造山带的形成时代和晚元古代基底的年龄。中段碎屑岩的年代学测试结果表明, 西里庙组火山?沉积岩系的形成时代为304~282 Ma, 其层位应置于哲斯组之下。西里庙组中段沉积地层碎屑锆石的物源分析结果为从中古生代构造挤压过程向晚古生代构造伸展过程转化的沉积响应提供了证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号