首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
亚微米级单分散聚苯乙烯微球的制备和影响因素研究   总被引:1,自引:0,他引:1  
目的:考察合成条件对快速法合成的聚苯乙烯(PS)微球粒径和分散系数的影响。方法:在保持其它影响因素不变的前提下,分别改变温度、引发剂浓度、离子强度,采用无皂乳液聚合法制备PS微球。结果:通过扫描电镜(SEM)观测合成的PS微球的形貌,并据此测算微球粒径和分散系数。结论:温度是影响微球粒径的重要因素,在反应温度为55~80℃之间,以水为分散介质的无皂乳液聚合法可制备出单分散性很好的亚微米PS球;引发剂浓度增加,微球粒径先减小,后增大,当引发剂浓度过大时(≥9.93×10^-3mol·L^-1),分散系数变大,微球粒径不均匀;微球粒径随离子强度的增加呈增大趋势,但离子强度的增大容易导致微球粒径分布变宽。  相似文献   

2.
通过无皂乳液聚合方法制备了单分散性好的丙烯酸甲酯(MA)-二乙烯苯(DVB)交联微球。研究了引发剂、单体、交联剂的用量、温度、搅拌速率、离子强度对聚合反应速率和微球粒径的影响。得到了外形较规则、粒径为730nm左右、分布均匀的交联丙烯酸甲酯-二乙烯苯微球,其制备条件是:以双蒸馏水为反应体系,C(MA)0=0.871mol/L,C(DVB)=0.067mol/L,T=70℃,转速为300r/min,  相似文献   

3.
以乙烯基吡咯烷酮为分散剂,以水和忆醇混合溶液为反应介质,用分散聚合方法制备单分散聚苯乙烯微球。考察了反应温度、稳定剂浓度和单体浓度对微球平均粒径大小和粒径分布的影响。实验结果表明聚乙二醇不适合作苯乙烯分散聚合的稳定剂。随聚乙烯基吡咯烷酮浓度变大,微球粒径变小,粒径分布变窄,单体深度的增大会导致微球粒径的增大及粒径分布的中宽。随聚合温度的提高,微球粒径变大。  相似文献   

4.
聚苯乙烯微球分散聚合的研究   总被引:2,自引:0,他引:2  
系统研究了在苯乙烯(St)体系的分散聚合中,以聚乙烯基吡咯烷酮(PVP)为分散剂、偶氮二异丁腈(AIBN)为引发剂、甲醇为分散介质,制备的微米级单分散聚苯乙烯微球。结果表明,粒径随着反应温度、引发剂浓度、初始单体浓度的增加而增加;同时,它也随着分散剂(PVP)的浓度的增大而减小。当使用乙醇为聚合介质时,制得了粒径较大的单分散性微球(粒径为4.5μm),为由甲醇制得微球粒径的3倍,SPAN值达到0.785。  相似文献   

5.
应用扫描电镜研究反相胶束法合成介孔二氧化硅微球   总被引:2,自引:0,他引:2  
以十六烷基三甲基溴化胺(CTAB)为模板,采用反相胶束法合成不同粒径的二氧化硅微球,并利用扫描电镜(SEM)对所制备的微球进行表征.考察了体系中乙醇/水比例、氨水用量、CTAB用量、温度和搅拌速度这5个条件对所制备的二氧化硅微球的粒径、均一性及分散性的影响.实验结果表明:增加体系中乙醇/水的比例将减小纳米颗粒的粒径,同时显著提高纳米颗粒的均一性和分散性;随着氨水用量的增加,微球的粒径先减小后增加,适当的氨水浓度有利于制备粒径均一的微球;增加CTAB的用量,微球的粒径增加;降低反应温度有利于合成大粒径、均一性好的微球;同时,提高搅拌速度也有利于制备均一性良好的微球.  相似文献   

6.
SiO2/PSt纳米复合微球的制备   总被引:1,自引:1,他引:0  
用Stober方法合成了SiO2/PSt纳米微球, 并对其进行表面改性. 以SiO2纳米微球为核, 采用乳液聚合法, 合成了SiO2/PSt纳米复合微球. 该复合微球粒径均匀、 单分散性好. 通过控制反应条件, 可以合成不同大小的复合微球. 对两种微球的形貌、 尺寸、 所携带官能团及表面元素变化情况进行了表征, 讨论了SiO2纳米微球用量、 乳化剂用量与反应介质配比等因素对SiO2/PSt纳米复合微球粒径的影响.  相似文献   

7.
以N-异丙基丙烯酰胺(NIPAM)、苯乙烯(St)为单体采用无皂乳液聚合法制备P(NIPAM-co-St)微球。在制备过程中,综合考察了反应时间、引发剂用量、相比、搅拌速度4个因素对P(NIPAM-co-St)微球的粒径的影响。实验结果表明,增加引发剂量、延长反应时间对减小微球粒径的影响最大,而增加相比则起着相反的作用;当搅拌速度在600 r/min,引发剂量为4%,相比为2.5%,反应时间为12 h的单分散性都比较好。  相似文献   

8.
以对苯乙烯磺酸钠(SSS)与苯乙烯组成无皂乳液聚合体系(PS-SSS)制备了粒度不等的窄分布聚苯乙烯(PS)微球,微球粒径可在60~700nm之间调节,粒径分布控制在2%之内。在PS-SSS体系中SSS用量增多会使PS微球的尺度下降,但对粒径分散性没有影响。PS的数均分子量会随着SSS用量增多而略有下降。随着引发剂用量的增多,PS微球粒径会下降,PS的数均分子量明显下降。在二氧化硅溶胶中可稳定制备聚苯乙烯微球,在PS-SSS体系中引入纳米二氧化硅溶胶(NanoSiO2)组成NanoSiO2-PS-SSS体系,可对微球粒度进行调制,NanoSiO2用量的增多会导致制备的聚苯乙烯微球粒径下降,对于微球PS的数均分子量影响很小。聚苯乙烯中引入SSS后会增加苯乙烯聚合速率,提高制备的聚苯乙烯的玻璃化转变温度。  相似文献   

9.
采用预乳化法制备纯丙微乳液,探讨了乳化剂用量、水的用量和聚合温度对纯丙微乳液平均粒径的影响,并对纯丙微乳液的部分性能进行了检测。结果表明,纯丙微乳液的平均粒径随乳化剂用量的增加而减小,随水用量的增加而增大,当聚合温度为70℃时,微乳液的平均粒径最小。  相似文献   

10.
以蔗糖为碳源采用一步水热法制备碳微球,研究了合成温度、时间对碳微球粒径、分散性、产率的影响.利用X射线衍射和扫描电子显微镜等表征手段对制备的碳微球的结构、粒径和形貌进行了表征,并进一步研究了其形成机理.结果表明:温度在低于140℃时并未生成碳微球,碳微球的合成温度必须大于160℃,升高反应温度和延长反应时间均有利于碳微球产率的提高,但过高的温度和过长的反应时间会加剧碳微球的团聚现象.  相似文献   

11.
利用无乳化剂乳液聚合法合成了粒度均匀 ,具有活性醛基的聚丙烯醛微球 ,并对影响其粒径、成球性、色泽及分散性等性质的 p H值、丙烯醛浓度、反应温度、催化剂浓度和搅拌方式等工艺条件做了优化选择 ;产物微球纯度高 ,表面活性大 ,粒径均一可调。利用 TEM和 IR技术对产物进行了初步表征 ,并对聚丙烯醛微球的聚合生成机制进行了初步探讨。  相似文献   

12.
膜乳化-复乳化法制备载蛋白高分子微球   总被引:2,自引:0,他引:2  
选择乙基纤维素(EC)为微球材料,牛血红蛋白(Hb)为模型药物,采用膜乳化-复乳(W1/O/W2)法制备了载蛋白高分子微球。采用扫描电子显微镜(SEM)考察微球形态及内部结构.激光粒度仪测定微球粒径及粒径分布。结果表明,膜孔径是决定微球粒径的主要因素.微球粒径随EC浓度和初乳相体积分数增大而增大。随着初乳相体积分数的增大,微球表面微孔数目减少,但孔径增大。当操作压力稍大于膜乳化初始临界压力时,可制得粒径单分散的栽蛋白高分子微球。这一结果对制备粒径单分散的栽蛋白高分子微球具有一定的参考价值。  相似文献   

13.
用分散聚合方法制备单分散聚苯乙烯微球。用扫描电镜对微球粒径大小和粒径分散系数进行了测定和计算。实验结果说明反应介质的极性对微球粒径和粒径分散系数具有很大的影响,随混合介质极性增大,微球的的粒径先增大而后变小,粒径分散系数变大,表明粒径分布加宽。增大引发剂浓度会导致微球粒径的增大和粒径分布的加宽。  相似文献   

14.
以苯乙烯、二乙烯基苯为单体,采用浓乳液聚合的方法制备得到聚(苯乙烯-二乙烯基苯)微球.通过热失重分析仪研究了聚(苯乙烯-二乙烯基苯)微球的热降解性能,并研究了单体配比、乳化剂用量等对该微球粒径及形态的影响.结果表明:乳化剂用量越多,聚(苯乙烯-二乙烯基苯)微球粒径越小;二乙烯基苯用量越多,微球粒径也越小.  相似文献   

15.
提出一种制备单分散聚苯乙烯纳米粒子的新方法.在苯乙烯的乳液聚合体系中,以十二烷基硫酸钠为乳化剂,聚合采用单体的分阶段及连续加料方式并分3个阶段进行:第1部分单体采用滴加形式并在80℃下聚合1 h;第2部分单体一次性加入并在同样温度下聚合1 h;升高温度至85℃下继续聚合1 h.根据对特定条件下粒子的不同成核机理的分析,探讨了阶段1的单体用量、引发剂与阶段1单体的质量比、乳化剂与总单体用量的质量比等因素对粒子的粒径与粒径分布的影响.结果证明,阶段1的苯乙烯与乳化剂的质量比在1~3之间,引发剂用量占单体质量的3%的条件下能够获得粒径小且单分散性好的聚苯乙烯纳米粒子,并且,在乳化剂/单体的质量比小于0.30的条件下,可以制备粒径小于20nm的聚苯乙烯纳米粒子.  相似文献   

16.
以聚乙烯吡咯烷酮为分散稳定剂、偶氮二异丁腈为引发剂、醇或醇/水混合物为分散介质,用分散共聚合方法制备了微米级苯乙烯-甲基丙烯酸共聚物微球。研究了功能单体用量、介质的溶解度参数、分散剂用量及温度对共聚反应速率、转化率、共聚物微球的粒径和粒径分布的影响。结果表明,功能单体用量增加,聚合速率变慢,粒径增大;介质的溶解度参数增大,聚合速率增大,转化率提高,粒径减小;分散剂用量增大,聚合速率及转化率的变化不大,粒径减小;反应温度升高,聚合速率和转化率提高,粒径增大,粒径分布变宽。  相似文献   

17.
采用无皂乳液聚合和表面然型聚合二步法,合成了Cu(Ⅱ)金属离子铸型高分子微球其表面分布羧基,粒径为0.56-0.60μm,具有良好的单分散性。采用静态吸附法考察了该微球对Cu(Ⅱ)金属离子的吸附动力学和热力学性能。  相似文献   

18.
选用相容性好、无毒且可降解的海藻酸钠作为基质材料,采用W/O乳化-离子交联法制备海藻酸钠微球。考察了内外部固化方法、油/水相体积比、乳化剂用量、搅拌速度以及海藻酸钠溶液质量分数等主要工艺参数对微球形貌、粒径大小及分布的影响,从而确定较为理想的微球制备工艺。实验结果显示,当油/水相体积比1∶1、乳化剂用量为6滴司盘-80和2滴吐温-80、搅拌速度500 r/min、海藻酸钠溶液质量分数为2%以及使用外部固化法时,制备得到的海藻酸钠微球球形度较好,粒径分布较窄,主要在7μm~40μm范围内,其在水中分散性良好。在所有工艺条件中,水相中海藻酸钠的质量分数对微球粒径和分散性起主要作用。  相似文献   

19.
为了解聚合条件对多组份共聚乳液粒度分布的影响,采用光散射粒度分布仪研究了丙烯酸丁酯(BA)苯乙烯(St)甲基丙烯酸(MAA)体系在复合乳化剂存在下的乳液聚合行为.探讨了聚合温度、乳化剂配比、乳化剂浓度、单体配比、MAA含量等对粒度分布的影响规律.结果表明聚合温度降低和油溶性单体St含量增大均使乳液粒径变大,而乳化剂的配比和浓度对粒度分布的影响较为复杂.  相似文献   

20.
在乙醇 水介质中通过分散聚合方法合成了单分散性好,交联度高,粒径在3~5μm的聚甲基丙烯酸甲酯微球,考察了单体、引发剂、稳定剂、交联剂浓度和介质配比对粒子粒径及其分布的影响.研究结果表明,交联剂、引发剂浓度增大,聚合速率增大,粒径呈增加趋势;稳定剂浓度增大,粒径减小.粒径在单体浓度为100g·L-1时出现一个最小值.初步探讨了聚合方法对粒径、粒径分布及粒子形态的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号