首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 106 毫秒
1.
中国民航货运量的时间序列模型   总被引:4,自引:0,他引:4  
主要运用时间序列分析的方法及EViews与SPSS统计软件对时间序列建立乘积季节模型,并搜集了中国1993年1月~2000年12月的民航货运量数据,对其进行分析.根据Box-Jenkins的建模方法,建立了中国民航货运量的模型,并对模型进行适应性检验.同时通过比较预测数据与预留数据间的差别,表明模型较为合理.  相似文献   

2.
3.
时间序列自相关函数的局部影响分析   总被引:3,自引:0,他引:3  
 时间序列模型不同于一般的线性回归模型,其样本点之间存在着一定的相依结构使得常用的探测异常值的方法,如数据删除、单点求导等对时间序列而言效果不佳.为了探测时间序列中的强影响点,文章介绍了局部影响分析方法,研究同时对几个点作微小扰动时自相关函数的局部改变量.最后,用一个例子来比较局部影响方法与单点求导方法在探测强影响点上的优劣性.  相似文献   

4.
收视率是指在某个时段收看某个节目的目标观众人数占总目标人群的比重,以百分比表示。收视率的高低能够反映出节目的观众喜爱程度以及节目所具有的社会影响力。本文采用2006年中国电视收视年鉴中的全国收视数据,以工作日及节假日收视率为研究对象,利用SAS统计软件做时间序列分析,并进行预测。结果显示,节假日收视率数据能够较好的拟合ARIMA(1,2,(1,4))模型,工作日收视率数据则利用ARIMA(1,2,(1,4))模型和AR(1,4)模型拟合结果都较好,但是相对而言ARIMA(1,2,(1,4))拟合效果最好。  相似文献   

5.
为了解决时间序列相似性比较问题,采用从时间序列的直观特征分析入手进行定义的方法,定义了具体的基于变换的时间序列的相似性,并分析了良好的时间序列变换函数所应具备的性质,讨论了一些有代表性的基于变换的时间序列相似性的定义和分析方法,对这些方法的基本思想加以提炼和总结,并讨论了这些方法的优、缺点,为基于变换的现代时间序列分析方法研究提供了较为完整的成果概览。同时,提出了借助变换函数来对时间序列的相似性进行定义的方法,为进一步做好时间序列相似性的比较工作提供了具体方向和理论依据。  相似文献   

6.
针对CERNET上的一段网络流量数据,基于季节时间序列相关理论,对其进行实证分析,对数据进行预处理、模型的适应性检验、平稳性检验、白噪声检验及模型预测.通过经验和实际的理论操作,充分显示了季节时间序列在处理网络流量这种带有周期性性质数据中的优势.  相似文献   

7.
以SAS软件为工具,对2009年3月~2013年3月河南省郑州、洛阳和平顶山3个城市新建住宅价格指数序列进行了实证分析.通过比较AIC、SBC值和可决系数R2,拟合3个序列的最终模型分别是郑州的异方差AR(3)-ARCH(1)模型和洛阳、平顶山的以时间变量t为因子的残差自回归模型.预测结果显示,河南省的房价近期仍呈上升态势,郑州的上涨幅度最大,大约是1.4% ~1.5%,洛阳约为0.5%,平顶山约为0.3%.  相似文献   

8.
时间序列分析中的ARMA算法及其软件实现   总被引:2,自引:0,他引:2  
阐述了一种适用于经济领域中的统计预测方法-ARMA法,它将预测对象随时间变化的序列,看作是一个随机序列,运用相应的数学模型加以近拟描述,利用自相关分析这一最 的工具,通过对建立模型,识别模型,检验模型,预测模型的深入研究,更本质地认识了这些动态数据的内在结构,并运用RATS软件对该模型成功地编制了一个界面友好,交互性强的实用汉化程序,达到了最佳预测效果,对于经济统计预测有一定的实用价值。  相似文献   

9.
给出时间序列联立方程模型,并以我国经济现状为研究对象,用时间序列联立方程和向量自回归两种模型对1996年形势进行模拟,预测1997年冬季度经济指标的发展情况,并对两种模型的结果进行对比分析.  相似文献   

10.
基于改进典型相关分析的混沌时间序列预测   总被引:1,自引:0,他引:1  
典型相关分析是目前常用的研究两个变量集间相关性的统计方法.针对线性典型相关分析法不能揭示变量间非线性关系,因而不适用于混沌系统等问题,将核典型相关分析与径向基函数神经网络相结合,提出了一种改进的核典型相关分析方法以解决映射空间样本未知及逆矩阵求解困难等问题.首先利用两个径向基函数神经网络,通过训练使两个网络输出之间的相关系数达到最大,可同时得到两组典型相关变量.然后建立预测模型,对Lorenz混沌方程及大连月气温与降雨二变量混沌时间序列进行仿真,并与传统的线性回归预测方法进行比较,多组仿真结果证明了所述方法的有效性.  相似文献   

11.
产品需求量非平稳时序的ANN-ARMA预测模型   总被引:3,自引:0,他引:3  
针对基于非平稳时序的产品需求量预测方法存在的问题,研究了人工神经网络(ANN)与自回归滑动平均(ARMA)模型的集成建模与预测方法. 产品需求量的非平稳时序可分解为确定项和随机项两个部分,用人工神经网络模型拟合确定项,以表示非平稳的变化趋势;用自回归滑动平均模型拟合随机项,以表示平稳的随机成分. 将两个模型的预测值之和作为产品需求量的优化预测值. 仿真结果表明,集成模型的预测精度高于单一的人工神经网络模型.  相似文献   

12.
在研究时间序列预测模型的基础上,提出了组合预测模型,并对模型参数进行了优化处理.用于预算未来某时期内市场供求趋势,从而为企业的决策提供依据.  相似文献   

13.
14.
使用PSO与GA结合的混合算法PSOGA对最小二乘支持向量机(LS-SVM)模型的参数进行了优化,搜索到更优的参数,提高了模型的时间序列预测精度.在Mackey-Glass、Lorenz时间序列上的实验结果表明:本文模型预测精度较高.  相似文献   

15.
提供了一种基于递推合成BP网络的非线性时间序列预测方法,并针对具体实例建立多变量时间序列模型.将其预测结果与灰色预测模型及常规BP网络的多变量时间序列预测模型的结果进行比较,其仿真实验结果表明该网络具有很强的学习特性和泛化能力,适合进行非线性时间序列建模及预测.  相似文献   

16.
电力负荷时间序列预测的应用与研究   总被引:1,自引:0,他引:1  
时间序列预测是电力负荷预测的重要方法。但是它对天气、节日等影响电力负荷变化的因素不敏感,对非平稳序列的处理需要多次差分运算达到基本平稳后才能进一步建立预测模型。因此,提出基于属性分类的时间序列预测方案。该方案把电力负荷按影响因素进行分类,预测时按预测对象的属性来选取预测样本。基于属性分类的电力负荷时序预测方案把时刻、天气、节日等因素考虑到了预测过程中,弥补了电力负荷时序预测的缺陷。实验证明该方法提高了电力负荷时序预测的速度和准确度。  相似文献   

17.
设计了时间序列分析系统,并介绍了该系统的组成模块及其功能,可以广泛用于经济、社会、信息等领域。  相似文献   

18.
在许多实际问题中,观测得到的数据序列既具有随机性,也含有模糊性,称其为模糊时间序列,由于模糊数计算的困难以及缺点导致模糊时间序列分析无法避免的缺陷,考虑利用一种新的模糊时间序列分析的方法,即将模糊中值和模糊跨度分别速模;并给出了实例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号