首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rare earth oxides doping has been extensively investigated as one of the effective methods to lower thermal conductivity of 4.55 mol% Y2O3stabilized ZrO2(YSZ) thermal barrier coatings(TBCs).In the present work,5–6 mol% Yb2O3and Y2O3co-doped ZrO2ceramics were synthesized by solid reaction sintering at 1600 1C.The phase stability of the samples after heat treatment at 1500 1C was investigated.Yb2O3and Y2O3co-doped zirconia,especially when Yb2O3/Y2O3≥1,contained less monoclinic phase than single Yb2O3or Y2O3phase doped zirconia,indicating that co-doped zirconia was more stable at high temperature than YSZ.The thermal conductivity of the 3 mol% Yb2O3+3 mol% Y2O3co-doped ZrO2was 1.8 W m 1K 1at 1000 1C,which was more than 20% lower than that of YSZ.  相似文献   

2.
A low cost chemical co-precipitation method was employed to fabricate nanoscale Al_2O_3-GdAlO_3-ZrO_2 powder with eutectic composition. A careful control of reaction conditions was required during the preparation. The synthesized nanopowders exhibited a particle size of 20-200 nm, and were highly dispersive and uniform. The results showed that calcination temperature had an important influence on the phase constituents of the nanopowders. With increasing the calcination temperature, a phase transformation from θ-Al_2O_3 to α-Al_2O_3 and a thermal decomposition from Gd_3 Al_5O_(12)(GdAG) to GdAlO_3 and α-Al_2O_3 occurred in sequence. A calcination temperature of 1300 ℃ was needed for the crystallization of α-Al_2 O_3. These nanosized powders were consolidated via hot pressing to produce a fully densified ceramic composite with eutectic composition. The Al_2O_3-GdAlO_3-ZrO_2 ceramic hot-pressed at 1500 ℃ exhibited a relative density of 99.4%, a flexural strength of 485 MPa and a fracture toughness of 6.5 MPa m~(1/2). The ceramic had a thermal conductivity of 1.9 W m K~(-1) at 1200 ℃ and a thermal expansion coefficient of 9.49 ×10~(-6) K~(-1) at 1100 ℃.  相似文献   

3.
Fe-25 wt% Y2O3composite powders have been fabricated by mechanical milling(MM) Fe powders of 100 μm in diameter and Y2O3nanoparticles in an argon atmosphere for the milling periods of4,8,12,24,36,and 48 h,respectively.The features of these powders were characterized by using X-ray diffraction(XRD),scanning electron microscopy(SEM),electron probe micro analyzer(EPMA) and transmission electron microscopy(TEM).The experimental results showed that the mean particle size and crystalline size of MM powders decreased with the milling time increasing.All the elements distributed homogenously inside the powders after 48 h of MM.The lattice constant of the matrix α-Fe kept constant with the milling time,and no solid solution took place during MM process.After 8 h of MM,the α-Fe in each powder became nanocrystalline.After 48 h of MM,Y2O3changes from nanostructure into amorphous structure,and the crystalline size of α-Fe further decreased to 10 nm.The Y2O3in the powders mechanically milled for 48 h kept the amorphous structure after being annealed at 400 1C,and starts to crystallize when the powders are annealed at 600 1C.The amorphous Y2O3contains a small amount of Fe,and crystalline FeYO3appears at 800 1C.  相似文献   

4.
The hydrogen desorption properties of Li 2 BNH 6 were improved by doping with cobalt. With the addition of CoCl 2 (7 wt%), more than 8 wt% of hydrogen was released from Li 2 BNH 6 at temperatures below 210°C, which is approximately 90°C lower than that of pristine Li 2 BNH 6 . X-ray diffraction, Fourier transform-infrared and Raman characterizations revealed that the dehydrogenation was a stepwise process with the formation of intermediates Li 4 BN 3 H 10 and LiBH 4 and final products of Li 3 BN 2 and LiH. The introduction of Co greatly accelerated the dehydrogenation of Li 4 BN 3 H 10 . X-ray absorption near-edge structure measurements revealed that Co and CoB species formed during ball milling of CoCl 2 with LiBH 4 and LiNH 2 , which may function as catalyst in the subsequent dehydrogenation.  相似文献   

5.
The 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) powder had three particle size distributions, while the fine one was lower than 100 nm. The 3Y-TZP compact was prepared by dry-pressing under pressures ranged from 10 to 30 MPa and then presintered at 1250°C for 2 h. The matrix dry-pressed under the pressure of 20 MPa had a porosity of 16.7% and could be easily processed by computer aided design and computer aided manufacturing (CAD/CAM), and which had been infiltrated by the La2O3–Al2O3–SiO2 glass at 1200°C for 4 h. The flexural strength and fracture toughness of the composite were 710.7 MPa and 6.51 MPa m1/2, respectively. The low shrinkage (0.3%) of the composite can satisfy the net-shape fabrication standard. XRD results illustrated that zirconia in the La2O3–Al2O3–SiO2 glass-infiltrated 3Y-TZP all-ceramic composite was mainly in the tetragonal phase. SEM and EDS results indicated that the pores of the matrix were almost filled by the La2O3–Al2O3 –SiO2 glass  相似文献   

6.
MgCo_2 and MgNiCo crystallize with hexagonal Laves type intermetallic structures of the C14 type and do not form hydrides at ambient hydrogen pressures. However, applying high hydrogen pressures in the GPa range forces the hydrogen absorption and leads to the formation of multi-phase compositions, which contain approximately 2.5 atoms H per formula unit of MgCo_2 or MgNiCo and remain thermally stable under normal conditions.The hydrogenation of MgCo_2 resulted in its decomposition to a ternary Mg_2CoD_5 deuteride and metallic cobalt. Phase-structural transformations accompanying the vacuum desorption of deuterium in the temperature range of 27–500 °C were studied using in situ neutron powder diffraction. The investigation showed a complete recovery of the initial MgCo_2 intermetallic via a Hydrogenation-Disproportionation-Desorption-Recombination process. At 300°C, the Mg_2CoD_5 deuteride first decomposed to elementary Mg and hexagonal Co. At 400°C, a MgCo phase was formed by interaction between Mg and Co. At the highest processing temperature of 500°C, a solid-state interaction of MgCo and Co resulted in the recovery of the initial MgCo_2.The interaction of MgNiCo with deuterium under the synthesis conditions of 2.8 GPa and 200 °C proceeded in a more complex way. A very stable ternary deuteride MgNi_2D_3 was leached away while Co was separated in the form of Mg_2CoD_5 and the remaining nickel formed a solid solution with Co with the approximate composition Ni_(0.7)Co_(0.3).The thermal desorption of deuterium from MgCo_2D_(2.5) and from MgNiCoD_(2.5) has been studied by Thermal Desorption Spectroscopy with deuterium released into a closed volume. The observed effects nicely correlate with changes in the phase structural composition of the hydrides formed.MgCo_2 is a new example of the hydrogen storage alloy, in which a successful HDDR processing results in the reversible formation of the initial intermetallic at much lower temperatures than in the equilibrium phase diagram of the Mg-Co system.  相似文献   

7.
CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior,microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from1250 1C to 1050 1C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3ceramic sintered at 1100 1C presented good microwave dielectric properties of εr?7.27,Q f?16,850 GHz and τf? 39.53 ppm/1C, which is much better than those of pure CaSiO3 ceramic sintered at 1340oC(Q f?13,109 GHz).The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

8.
In order to protect Nb-Ti-Si based ultrahigh temperature alloy from oxidation, pack cementation processes were utilized to prepare Ce and Y jointly modified silicide coatings. The Ce and Y jointly modified silicide coating has a double-layer structure: a relatively thick (Nb, X)Si2 (X represents Ti, Cr and Hf elements) outer layer and a thin (Ti, Nb)5Si4 transitional layer. The pack cementation experiments at 1150 ℃ for 8 h proved that the addition of certain amounts of CeO2 and Y2O3 powders in the packs distinctly influenced the coating thickness, the contents of Si, Ce and Y in the (Nb, X)Si2 outer layers, and the density of cavities in the coatings. In order to study the effects of Ce and Y joint modification in the silicide coatings, both only Ce and only Y modified silicide coatings were also prepared for comparison. The mechanisms of the beneficial effects of Ce and Y are discussed. A pack mixture containing 1.5CeO2-0.75Y2O3 (wt%) powders was employed to investigate the growth kinetics of the Ce and Y jointly modified silicide coating at 1050, 1150 and 1250 ℃. It has been found that the growth kinetics obeyed parabolic laws and the parabolic rate constants were 109.20 mm2/h at 1050 ℃, 366.75 mm2/h at 1150 ℃ and 569.78 mm2/h at 1250 ℃, and the activation energy for the growth of the Ce and Y jointly modified silicide coating was 197.53 kJ/mol.  相似文献   

9.
Al2O3 –TiC/TiCN–Fe composite powders were successfully prepared directly from ilmenite at 1300–1400℃.The effects of Al/C ratio,sintering atmosphere,and reaction temperature and time on the reaction products were investigated.Results showed that the nitrogen atmosphere was bene cial to the reduction of ilmenite and the formation of Al2O3 –TiC/TiCN–Fe composite powders.When the reaction temperature was between 600 and 1100℃,the intermediate products,TiO2,Ti3O5 and Ti4O7 were found,which changed to TiC or TiCN at higher temperature.Al/C ratio was found to affect the reaction process and synthesis products.When Al addition was 0.5 mol,the Al2O3 phase did not appear.The content of carbon in TiCN rose when the reaction temperature was increased.  相似文献   

10.
Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd_2O_3-4.5 mol% Y_2 O_3-ZrO_2(2 GdYSZ) topcoat using air plasma spraying(APS). Hot corrosion behavior of the as-sprayed thermal barrier coatings(TBCs) were investigated in the presence of 50 wt%Na_2SO_4 + 50 wt% V_2O_5 as the corrosive molten salt at 900 ℃ for 100 h. The analysis results indicate that Gd doped YVO_4 and m-ZrO_2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers(Y_2O_3, Gd_2O_3) of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO_2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.  相似文献   

11.
The effect of B2O3 addition on the aqueous tape casting, sintering, microstructure and microwave dielectric properties of Li2O-Nb2O5-TiO2 ceramics has been investigated. The tape casting slurries exhibit a typical shear-thinning behavior without thixotropy, but the addition of B2O3 increases the viscosity of the slurries significantly. It was found that doping of B2O3 can decrease the tensile strength, strain to failure and density of the green tapes. The sintering temperature could be lowed down to 900℃ with the addition of 2 wt% B2O3 due to the liquid phase effect. No secondary phase is observed. The addition of B2O3 does not induce much degradation on the microwave dielectric properties. Optimum microwave dielectric properties of εr 67, Q×f 6560 GHz are obtained for Li2O-Nb2O5-TiO2 ceramics containing 2 wt% B2O3 sintered at 900 1C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) application.  相似文献   

12.
Synthesis and consolidation behavior of Cu–8 at%Cr alloy powders made by mechanical alloying with elemental Cu and Cr powders,and subsequently,compressive and electrical properties of the consolidated alloys were studied.Solid solubility of Cr in Cu during milling,and subsequent phase transformations during sintering and heat treatment of sintered components were analyzed using X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The milled powders were compacted applying three different pressures(200 MPa,400 MPa and 600 MPa)and sintered in H2atmosphere at 900 1C for 30 min and at 1000 1C for 1 h and 2 h.The maximum densification(92.8%)was achieved for the sample compacted at 600 MPa and sintered for 1000 1C for 2 h.Hardness and densification behavior further increased for the compacts sintered at 900 1C for 30 min after rolling and annealing process.TEM investigation of the sintered compacts revealed the bimodal distribution of Cu grains with nano-sized Cr and Cr2O3precipitation along the grain boundary as well as in grain interior.Pinning of grain boundaries by the precipitates stabilized the fine grain structure in bimodal distribution.  相似文献   

13.
Magnetic Co1-xNixFe2O4 nanoparticles (NPs) were successfully synthesized via a solvothermal method using ethylene glycol as solvent.The samples were characterized by X-ray diffraction (XRD),field emiss...  相似文献   

14.
In order to improve the anti-oxidation of C/C composites, a SiC–MoSi2multi-phase coating for SiC coated carbon/carbon composites(C/C)was prepared by low pressure chemical vapor deposition(LPCVD) using methyltrichlorosilane(MTS) as precursor, combined with slurry painting from MoSi2 powder. The phase composition and morphology were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) methods, and the deposition mechanism was discussed. The isothermal oxidation and thermal shock resistance were investigated in a furnace containing air environment at 1500 1C. The results show that the as-prepared SiC–MoSi2coating consists of MoSi2 particles as a dispersing phase and CVD–SiC as a continuous phase. The weight loss of the coated samples is 1.51% after oxidation at 1500 1C for 90 h, and 4.79% after 30 thermal cycles between 1500 1C and room temperature. The penetrable cracks and cavities in the coating served as the diffusion channel of oxygen, resulted in the oxidation of C/C composites, and led to the weight loss in oxidation.  相似文献   

15.
In the present work,one dimensional La0.8Sr0.2Co0.2Fe0.8O3 δ(LSCF) nanofibers with the mean diameter of about 100 nm prepared by electrospinning were deposited on Gd0.2Ce0.8O1.9(GDC) electrolyte followed by sintering to form one dimensional LSCF nanofiber cathode. And LSCF/GDC composite cathodes were formed by introducing GDC phases into LSCF nanofiber scaffold using infiltration method. The polarization resistances for the composite cathode with an optimal LSCF/GDC mass ratio of 1/0.56 are 0.27,0.14 and 0.07 Ω cm2at 650,700 and750 1C,respectively,which are obviously smaller than 2.26,0.78 and 0.29 Ω cm2of pure LSCF nanofiber cathode. And the activation energy is1.194 eV,which is much lower than that of pure LSCF nanofiber cathode(1.684 eV). These results demonstrate that the infiltration of GDC into LSCF nanofiber scaffold is an effective approach to achieve high performance cathode for solid oxide fuel cells(SOFCs). In addition,the performance of composite cathode in this work was also compared with that of our previous nanorod structured LSCF/GDC composite cathode.  相似文献   

16.
In this article Fischer–Tropsch(FT) synthesis was studied over cobalt nanoparticles supported on modifed Montmorillonite(Zr-PILC).Co-loaded/Zr-PILC catalysts were synthesized by hydrothermal methods and were characterized by XRD,XRF,BET,H2-TPR,TGA and SEM techniques.FT reactions were carried out in fxed bed microreactor(T 225 1C,260 1C and 275 1C,P 1,5 and 10 bars).The FT-products obtained over Co-loaded/Zr-PILC catalysts showed increased selectivity of C2–C12hydrocarbons and decreased selectivity towards CH4and higher molecular weight hydrocarbons(C21) at a TOS of 2–30 h as compared to the Co-loaded/NaMMT catalysts.With increase in reaction temperature from225 1C to 275 1C,CO-conversion and CH4selectivity increases while that of C5+hydrocarbons decreases.Decrease in CH4selectivity while increase in C5+hydrocarbons and CO-conversion were observed on increasing the pressure of reaction.  相似文献   

17.
Electromagnetic signals in deep reservoir are very weak so that it is difficult to predict about the presence of hydrocarbon in seabed logging(SBL) environment.In the present work,Mn0.8Zn0.2Fe2O4 nanoferrites were prepared by a sol–gel technique at different sintering temperatures of450 °C,650 °C and 850 °C to increase the strength of electromagnetic(EM) antenna.XRD,FESEM,Raman spectroscopy and HRTEM were used to analyze the phase,surface morphology and size of the nanoferrites.Magnetic properties of the nanoferrites were also measured using an impedance network analyzer.However,nanoferrites sintered at 850 °C with initial permeability of 200 and Q factor of 50 were used as magnetic feeders with the EM antenna.Lab scale experiments were performed to investigate the effect of magnetic field strength in scale tank.SPSS and MATLAB softwares were also used to confirm the oil presence in scale tank.It was observed that the magnitude of the EM waves for the antenna was increased up to 233%.Finally,the correlation values also show 208% increase in the magnetic field strength with the presence of the oil.Therefore,antenna with Mn0.8Zn0.2Fe2O4 nanoferrites based magnetic feeders can be used for deep water and deep target hydrocarbon exploration.  相似文献   

18.
The application of magnesium hydride(MgH_2) is limited due to the high reaction temperature and slow kinetics during dehydrogenation. In order to ameliorate the dehydrogenation property of MgH_2, MgC_(0.5)Co_3 compound with induction and catalytic effects was introduced into the Mg/MgH_2 system via ball-milling and hydriding combustion methods in present study. Compared to the pure MgH_2,the initial hydrogen desorption temperature of MgH_2–MgC_(0.5)Co_3 composite lowered to 237°C, decreasing by 141°C. At 325°C the MgH_2–MgC_(0.5)Co_3 composite could release 4.38 wt% H_2 within 60 min, which is 4.5 times the capacity of hydrogen released by as milled-MgH_2. Besides, the hydrogen desorption activation energy of the MgH_2–MgC_(0.5)Co_3 composite was dramatically reduced to 126.7 ± 1.4 k J/mol. It was observed that MgC_(0.5)Co_3 was chemically stable and no chemical transformation occurred after cycling, which not only inhibited the nucleation and growth of composite particles, but also had a positive effect on the hydrogen desorption reaction of MgH_2 due to its catalytic effect.This study may provide references for designing and synthesizing Mg–C–Co alloy compound for the Mg-based hydrogen storage area.  相似文献   

19.
The ternary magnesium hydride NaMgH 3 has been synthesised via reactive milling techniques.The method employed neither a reactive H2 atmosphere nor high pressure sintering or other post-treatment processes.The formation of the ternary hydride was studied as a function of milling time and ball:powder ratio.High purity NaMgH 3 powder(orthorhombic space group Pnma,a 5.437(2),b 7.705(5),c 5.477(2) ;Z 4) was prepared in 5 h at high ball:powder ratios and characterised by powder X-ray diffraction(PXD),Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDX).The products formed sub-micron scale(typically 200-400 nm in size) crystallites that were approximately isotropic in shape.The dehydrogenation behaviour of the ternary hydride was investigated by temperature programmed desorption(TPD).The nanostructured hydride releases hydrogen in two steps with an onset temperature for the first step of 513 K.  相似文献   

20.
Ti3SiC2 has the potential to replace graphite as reinforcing particles in Cu matrix composites for applications in brush,electrical contacts and electrode materials.In this paper the fabrication of Cu-Ti3SiC2 metal matrix composites prepared by warm compaction powder metallurgy forming and spark plasma sintering(SPS) was studied.The stability of Ti3SiC2 at different sintering temperatures was also studied.The present experimental results indicate that the reinforcing particles in Cu-Ti3SiC2 composites are not stable at and above 800℃.The decomposition of Ti3SiC2 will lead to the formation of TiC and/or other carbides and TiSi2.If purity is the major concern,the processing and servicing temperatures of the Cu-Ti3SiC2 composite should be limited to 750℃ or lower.The composites prepared by warm compaction forming and SPS sintering at 750℃ have lower density when compared with the composites prepared by SPS sintering at 950℃,but their electrical resistivity values are very close to each other and even lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号