首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
以4.4’-二氟二苯酮,4,4’-二氯二苯砜和双酚S为单体,通过溶液缩聚法合成了聚芳醚酮砜共聚物系列样品,并用IR,DSC,TGA和动态粘弹谱仪进行表征.结果表明:共聚物是无定形聚合物,其热性能和动态力学性能介于聚醚酮醚砜和聚醚砜之间,共聚物的T_g随组成的变化符合Fox方程,酮类组分有利于提高共聚物的耐高温性能。  相似文献   

2.
杂环聚芳醚砜、聚芳醚酮及其共聚物合成与性能研究   总被引:7,自引:0,他引:7  
以自制的新型类双酚化合物4-(2-甲基-4-羟基苯基)-2,3-二氮杂萘-1-酮(mM-HPPZ)为单体,与4,4′-二氟二苯酮,4,4′-二氯二苯砜进行溶液缩聚反应,合成了一类新型间甲基取代聚芳醚砜(PPES)、聚芳醚酮(PPEK)及其共聚物聚芳醚砜酮(PPESK,n(S)/n(K)=1/1)材料,并对其聚合条件作了初步探讨;利用核磁共振、红外光谱分析研究了双酚单体及其聚合物的结构,利用DSC、TGA对聚合物的耐热性能进行了分析。实验结果表明,该类双酚单体具有与双酚类似的活性,可以进行聚合反应,新型间甲基取代聚芳醚玻璃化转变温度高(Tg=520-558K);耐热稳定性好,其在氮气氛下5%热失重温度为693K左右,合成的间甲基取代聚芳醚砜、聚芳醚酮及其共聚物聚芳醚砜酮在氯仿、四氯乙烷、四氢呋喃和酰胺类溶剂中可溶解成膜。  相似文献   

3.
以4,4′-二(4-氯甲酰基苯氧基)二苯砜(SODBC)与4,4′-二苯氧基二苯砜(DPODPS)、4,4′-二(2-甲基苯氧基)二苯砜(o-Me-DPODPS)、4,4′-二(3-甲基苯氧基)二苯砜(m-Me-DPODPS)和4,4′-二(2,6-二甲基苯氧基)二苯砜(o-Me2-DPODPS)等为单体在1,2-二氯乙烷(DCE)、N-2-甲基吡咯烷酮(NMP)、无水三氯化铝(AlCl3)溶剂催化剂体系中,通过低温溶液亲电共缩聚合成了聚芳醚砜醚酮(PESEK),邻位、间位甲基取代、双邻位甲基取代的聚芳醚砜醚酮(o-Me-PESEK、m-Me-PESEK、o-Me2-PESEK)聚合物.用FT-IR、1H NMR、DSC、TGA、WAXD等对聚合物进行了表征,研究了聚合物的溶解性.结果表明:聚合物具有较高的玻璃化转变温度(Tg)、良好的热稳定性和优良的溶解性.  相似文献   

4.
以4,4’-二(β萘氧基)二苯砜,对苯二甲酰氯和间苯二甲酰氯为单体,通过亲电综电聚反应,合成了一系列主链含萘环的新型聚芳醚砜醚酮酮共聚物,并用IR、DSC、WAXD等方法对其进行了分析表征。  相似文献   

5.
本文以4,4′-二氟二苯酮、4,4′-双-(4-氯苯基磺酰基)朕苯和对苯二酚为单体通过溶液缩聚合成了聚芳醚酮砜共聚物系列样品,并用IR,DSC,TGA,WAXD等手段对共聚物进行表征.结果表明,由于两种双卤单体活性不同,在缩聚反应中所形成的其聚物分子链为无规嵌段结构;该共聚物随着醚醚砜砜重复单元含量增加由结晶性高聚物转变为非结晶高聚物,共聚物具有很好的耐高温性能.  相似文献   

6.
以无水AlCl3/二氯乙烷(DCE)/N,N-二甲基甲酰胺(DMF)为复合溶剂体系,在低温条件下,以4,4’-二苯氧基二苯砜(DPODPS)、对苯二甲酰氯(TPC)、4,4’-联苯二甲酰氯(BPPC)为原料通过亲电共缩聚反应制得一系列聚芳醚砜醚酮酮(PESEKKs),用FT-IR、DSC、TG、WAXD等技术对聚合物做了表征.结果表明:随着BPPC含量的增加,共聚物的Tg从194 ℃上升到210 ℃,Tm从223 ℃增加到238 ℃,热分解温度均大于550 ℃,聚合物的耐热性能得到显著提升.经过检测,共聚物的溶解性能良好.  相似文献   

7.
研究了以1,2二氯乙烷为溶剂,以无水三氯化铝/N-甲基吡咯烷酮(NMP)为复合催化体系,在低温条件下,以二苯氧基苯(DPE)、三苯二醚(DPOP)、对苯二甲酰氯(TPC)为原料通过缩聚反应合成的一系列聚芳醚酮酮和聚芳醚醚酮酮的无规共聚物,并用FT-IR、DSC、TGA、X-射线衍射等技术对聚合物进行了表征,结果表明:该系列聚合物为半晶态聚集物,具有很高的热稳定性.  相似文献   

8.
以2,2’-二甲基-4,4’-二苯氧基二苯砜(α—CH3-DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,通过亲电缩聚反应,合成了一系列主链含四面体构型的砜基及其醚键邻位含有甲基的新型聚芳醚砜醚酮酮聚合物.结果表明,该类聚合物具有较高的玻璃化转变温度(Tg)和良好的耐热性.  相似文献   

9.
用热重法(TGA)研究了惰性气氛下聚芳醚酮酮(PEKK)的热分解动力学,发现PEKK的热分解符合无规引发裂解模型.由Ozawa等失重百分率法求得0~30%失重百分率下反应的活化能在234.9~242.3kJ/mol之间,频率因子A值在1.538×1013~6.637×1013min-1之间.随着失重百分率的增大,热分解反应活化能增大.结果表明,PEKK具有较高的热稳定性.预测氮气中280℃失重5%的热老化寿命为15a.  相似文献   

10.
以氯甲基甲醚为氯甲基化试剂,氯化锌(ZnCl2)为催化剂,对聚芳醚砜(PSF)进行氯甲基化反应.通过改变反应时间、催化剂用量及反应温度等来探讨聚芳醚砜氯甲基化反应的最佳条件.合成的聚合物结构由1H NMR得到确认,其热学性能通过热重分析(TGA)、示差扫描量热法(DSC)测试,并考察了其溶解性能.  相似文献   

11.
含萘环聚醚砜醚酮酮热分解动力学研究   总被引:1,自引:1,他引:0  
以热重法研究了新型含萘环聚醚砜醚酮酮(PESEKK)在N2和空气中不同升温速率时的热降解过程.结果表明,PESEKK在空气中的热降解过程为二步反应,在N2中为一步反应;随着升温速率的增大,其降解温度线性升高,在N2中的降解温度比空气中的高.由Ozawa等失重百分率法求得PESEKK在N2中失重0%~30%的反应活化能在230.2~239.5kJ·mol-1,频率因子A值在2.315×1014~4.718×1014min-1之间,并确定了其热降解反应的表观反应级数为1.  相似文献   

12.
以二氟二苯甲酮(DFK)、磺化二氟二苯甲酮(SDFK)和双酚A为原料,合成了双酚A型磺化聚芳醚酮(SPAEK-A),通过FT-IR对其结构进行了表征,并对离子交换容量、磺化度、拉伸强度、弹性模量及热性能进行了测试.结果表明:双酚A型磺化聚芳醚酮具有良好的性能,可以满足质子交换膜的要求.  相似文献   

13.
以间甲基二苯醚(MPE)对全对苯基位聚醚酮酮进行了改性研究.结果表明,随着MePEKK含量的增加,共聚物(PEKK/MePEKK)的对数比浓粘度、Tg、Tm和结晶度逐渐下降,但仍具有很好的耐热性,其溶解性得到了明显的改善.  相似文献   

14.
通过4,4′-二(β-萘氧基)二苯酮(DNOPK)、二苯醚(DPE)与对苯二甲酰氯(TPC)、2,5-二氯对苯二甲酰氯(DCTPC)的低温溶液亲电共缩聚反应合成出一系列不同组分的高分子量含2,6-萘基结构的氯化聚芳醚酮酮无规共聚物。研究了含氯侧基对共聚物性能的影响,并对其进行了IR、DSC、TG、WAXD等分析表征。结果表明:所得共聚物具有优良的耐热性和力学性能,随着DCTPC单体含量的增加,其玻璃化温度(Tg)变化不大,而熔融温度(Tm)和结晶度逐渐降低,当其含量超过40mol%时,Tm消失,聚合物呈现非晶态结构,聚合物的热分解温度(失重5%)Td及力学性能均呈下降趋势,但溶解性能得到明显改善。  相似文献   

15.
以聚芳醚酮和液晶聚芳酷齐聚物为原料,通过高温溶液缩聚法合成了系列聚芳醋酮-液晶聚芳酯嵌段共聚物.偏光显微镜结果表明,所有共聚物在熔点以上都有液晶双折射行为.  相似文献   

16.
用酸碱中和法和离子交换法由磺化聚醚酮酮制得了一价型聚醚酮酮磺酸盐和二价型聚醚酮酮磺酸盐。IR分析表明,两种方法制备的价数相同的聚醚酮酮磺酸盐有相似结构;TG分析表明,一价型聚醚酮酮磺酸盐的热分解发生在520℃;而二价型聚醚酮酮磺酸盐在370℃有一失去磺酸基的小热分解峰,520℃发生主链的热分解。  相似文献   

17.
新型耐高温材料聚芳醚酮的研究进展   总被引:2,自引:0,他引:2  
基于新型的耐高温聚合物聚芳醚酮的结构特点介绍了其主要的4种类型:聚醚酮,聚醚醚酮,聚醚酮酮,聚醚酮醚酮酮,给出了3种改性方法:采用不对称单体和引入非共平面结构以破坏分子间的规整堆积;分子主链中引入大的侧基;共聚、共混改性,概述了聚芳醚酮的应用现状和发展趋势。  相似文献   

18.
特种工程塑料聚芳醚酮的研究进展   总被引:8,自引:0,他引:8  
阐述了聚芳醚酮的基本性质、合成方法及新型结构聚芳醚酮的设计及研究进展,并指出了聚芳醚酮的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号