首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 143 毫秒
1.
Co/TiO2粒子的制备及其光催化降解罗丹明B的研究   总被引:3,自引:0,他引:3  
通过溶胶—凝胶法制备掺杂Co2+的纳米TiO2,并用XRD和TEM进行了分析和表征.以汞灯为光源,通过对罗丹明B的降解反应,考察了Co2+/TiO2的光催化活性.结果表明,Co2+的掺杂减小了TiO2颗粒的粒径,提高了TiO2的光催化活性,Co2+惨杂量为1.0%时的光催化活性最高.另外,本文还研究了催化剂投加量对罗丹明B光催化降解效率的影响.  相似文献   

2.
通过溶胶-凝胶法制备不同含量的TiO2/KIT-6催化剂,并用XRD,N2吸附,TEM,FI-IR进行表征.负载材料中TiO2的晶型为锐钛矿相,负载材料的比表面积和孔体积随其中TiO2负载量的增加而减小,TiO2的平均粒径随其负载量的增加而增大.以罗丹明B为降解物进行降解实验并对不同TiO2负载量,重复使用率上对催化剂活性进行研究.结果表明:罗丹明B的光催化降解反应遵循一级反应动力学,550℃煅烧条件下制备的30%TiO2/KIT-6的催化活性最高.0.01g的催化剂对70mL的浓度为20mg/L的罗丹明B在25min的降解率达到94.5%.  相似文献   

3.
采用溶胶-凝胶法制备了掺铁TiO2纳米粉体,并用x-射线衍射法(XRD)分析样品的晶相结构,考察了制备掺铁TiO2时的掺铁量和焙烧温度、降解体系的初始pH值和反应温度对掺铁纳米TiO2催化降解罗丹明B溶液效率的影响。实验证实,在金属卤素灯照射下,掺铁纳米Ti02在温和条件下催化降解罗丹明B可行。研究结果表明,初始pH=5、反应温度35℃、焙烧温度600℃、掺铁量为0.05wt%的纳米TiO2催化降解罗丹明B效果最佳,降解率可达94.69%;所制备的掺铁TiO2粒径在10—30nm左右,以锐钛矿为主的混晶存在于600℃焙烧的样品中。  相似文献   

4.
以钛酸丁酯和正硅酸乙酯为主要原料,用两步溶胶-凝胶法制备了TiO2/SiO2复合材料,并对其光催化降解活性艳红X-3B溶液的性能进行了研究,考察了Ti∶Si摩尔比、焙烧温度、初始浓度和催化剂用量对其光催化降解率的影响。结果表明,当n(Ti)∶n(Si)=6∶1,焙烧温度为500℃时TiO2/SiO2复合材料的光催化活性最好,比相同条件下纯TiO2的光催化活性有明显提高;相同条件下,降解率随溶液初始浓度的升高而降低,催化剂用量存在最佳值,25 mg/L的活性艳红X-3B溶液,催化剂用量的最佳值为1.6 g/L。  相似文献   

5.
以自制氧化石墨、钛酸丁酯为主要原料,用溶胶-凝胶法制备了TiO2/氧化石墨烯(TiO2/GO)复合材料,采用TEM、XRD对其进行表征。以活性艳红X-3B溶液为模拟废水,研究了该复合材料的光催化降解性能,考察了氧化石墨烯含量、染料初始浓度、催化剂用量等因素对其光催化降解率的影响。结果表明:氧化石墨烯片层上均匀负载着锐钛矿型的TiO2球形颗粒,粒径在10 nm左右;当TiO2/GO复合材料中加入的GO含量为100 mg时光催化活性最好,比相同条件下纯TiO2和TiO2与氧化石墨物理混合物的光催化活性有明显提高;相同条件下,降解率随溶液初始浓度的升高而降低,催化剂用量存在最佳值,100 mg/L的活性艳红X-3B溶液,催化剂用量的最佳值为0.8 g/L,反应60 min后其降解率可达96%。  相似文献   

6.
纳米Bi_2O_3/TiO_2光催化剂的制备及光催化活性评价   总被引:2,自引:1,他引:1  
在超声波作用下采用水解法制备Bi2O3/TiO2复合光催化剂,以紫外灯为光源,对有机染料进行光催化降解实验,考察Bi2O3/TiO2的光催化性能.结果表明:Bi2O3与TiO2复合拓宽了催化剂对光的吸收范围,提高了TiO2的光催化活性,掺杂量(Bi2O3)为0.25%(w)复合光催化剂催化活性最高.考察了催化剂投加量、染料初始浓度、溶液pH值等因素对罗丹明B降解效果的影响,降解反应遵从假一级动力学模型,测得反应速率常数为0.0574min-1.  相似文献   

7.
以乙酸锌、钛酸四丁酯和介孔材料KIT-6为原料,采用沉积沉淀法制备了不同组成的Zn-TiO2/KIT-6.通过X射线衍射(XRD)和N2物理吸附对催化剂进行了表征.选择罗丹明B作为探针反应考察其光催化活性.结果表明,掺Zn能提高TiO2/KIT-6的催化活性,当Zn的质量分数为1.63%(相对TiO2/KIT-6)时,Zn-TiO2/KIT-6的光催化作用最好.0.01g的催化剂对90mL的罗丹明B(20mg/L)在25min时的降解率达到97.6%.  相似文献   

8.
负载型Ca掺杂TiO2材料的制备及其光催化性能   总被引:1,自引:4,他引:1  
选用表面多孔的陶瓷颗粒为载体,采用水热合成法制备了负载型Ca掺杂TiO2光催化材料。以样品对水中罗丹明B的降解性能为评价指标,对样品的光催化性能进行评价。光催化降解体系中罗丹明B的质量浓度相对于负载型Ca掺杂TiO2光催化材料上的催化活性中心浓度很高,反应物分子在催化剂表面吸附达饱和状态,反应速度完全由催化剂表面的电子和空穴的数量决定。样品对水中罗丹明B的光催化降解反应严格符合零级动力学规律。煅烧使Ca掺入TiO2晶体,引起晶格膨胀。掺杂Ca的样品在500℃煅烧0.5h后光催化性能提高2倍以上。  相似文献   

9.
POMs/TiO2复合催化剂光催化降解染料废水的研究   总被引:5,自引:0,他引:5  
采用溶胶-凝胶方法表面修饰TiO2制备了几种POMs/TiO2复合光催化剂,考察了催化剂在紫外光照射下对模拟染料废水(茜素红溶液)的光催化降解行为.结果表明:POMs/TiO2复合催化剂较纯TiO2光催化降解茜素红活性明显提高,其中复合催化剂Cr3OSiW12/TiO2光催化降解模拟染料废水(茜素红溶液)效果最佳.反应最佳条件:催化剂为Cr3OSiW12/TiO2,多酸质量分数为0.5%,催化剂用量为15 mg,茜素红溶液浓度为0.1mmol/L.茜素红降解质量分数可达74.6%.  相似文献   

10.
掺铜方法对二氧化钛光催化氧化还原性能的影响   总被引:3,自引:0,他引:3  
采用浸渍法、水解沉淀法、机械混合法制备了铜掺杂的TiO2光催化剂.利用XRD,XPS,TPR等手段对不同样品进行了表征,以乙酸水溶液的光催化氧化降解及二氧化碳光催化还原为反应探针,对3种催化剂光催化活性进行了评价.结果表明,不同方法掺铜影响催化剂表面性质如吸附氧、元素价态及分布,进而影响光催化性能.吸附氧的性能以及存在合适比例的氧化还原对Cu+/Cu2+导致浸渍法制备的掺铜TiO2光催化剂具有最好的光催化活性.  相似文献   

11.
采用溶剂热法制备出BiOCOOH,利用NaBH4水溶液为还原剂,原位还原制备了Bi/BiOCOOH复合光催化剂。通过XRD、FESEM、TEM、DRS和PL等测试手段对光催化剂的物相、形貌和光学性质等进行表征。以罗丹明B为模型污染物,考察了NaBH4用量对Bi/BiOCOOH复合光催化剂性能的影响。结果表明:当NaBH4的用量为25mg时,由于单质Bi的SPR效应使得光生电子和空穴的复合率降低,增强了光催化剂对可见光的吸收,从而显著提高其可见光催化性能,可在50min内,完全降解罗丹明B。  相似文献   

12.
采用溶胶-凝胶法合成了不同Eu3+掺杂量、不同煅烧温度的Eu3+/TiO2的光催化剂,利用XRD和FT-IR对样品进行表征和分析.以罗丹明B为目标降解物,对所制样品光活性进行了研究;同时,考察了助催化剂对其光催化性能的影响.结果表明,稀土Eu3+的掺杂能细化晶粒,在500℃下煅烧,Eu3+/TiO2摩尔数比为0.05%的催化剂,加入5 mL助催化剂,三基色节能灯照射3 h,降解率可达91.8%.  相似文献   

13.
采用溶剂热法制备Zn_2Ge O_4纳米晶;并将其负载到氧化石墨烯(GO)上。通过两步水热法制备了一系列Zn_2Ge O_4/GO复合光催化剂。利用X-射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见吸收光谱(UV-Vis)等手段对催化剂的结构、形貌及光学性能进行了表征;并以罗丹明B(Rh B)作为目标降解污染物,对其进行了光催化性能测试。结果表明,Zn_2Ge O_4纳米晶均匀地分散在GO上,与单纯的Zn_2Ge O_4纳米晶相比,Zn_2Ge O_4/GO复合物的光催化性能有了明显的提高。当GO质量分数为5%时,罗丹明B降解率达到95.21%;且经过5次循环使用后,仍然保持较高的光催化活性,具有良好的稳定性。  相似文献   

14.
采用低温燃烧法制备硅藻土负载Ce-TiO2光催化材料,借助XRD,SEM对样品进行表征.以罗丹明B溶液为目标污染物,研究并确定了负载型光催化材料的最佳制备和光催化降解条件.结果表明,TiO2光催化材料的最佳煅烧温度为600℃,最佳Ce掺杂量为02%,制备的样品为锐钛矿和金红石组成的混合晶型,且锐钛矿占主要部分.最佳的光催化降解条件为:罗丹明B溶液初始质量浓度为10mg/L,催化剂用量为10g/L,溶液pH=9.制得的复合光催化材料失活再生后降解率可达93%,且可多次重复使用,光催化性能明显优于纯TiO2光催化材料.  相似文献   

15.
A novel nano-heterostructure of Ag I/Bi_2MoO_6 photocatalyst was successfully synthesized via a facile depositionprecipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi_2MoO_6 or Ag I showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi_2MoO_6 composite with an optimal content of 20 wt% Ag I exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi_2MoO_6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants.  相似文献   

16.
采用水热方法制备了纳米硫化镉光催化剂.借助粉末X-射线衍射(XRD),固体紫外可见漫反射光谱(DRS)对合成产物进行了表征.以纳米CdS和本体CdS作为可见光的光催化剂,用难降解的离子型染料罗丹明B为探针分子,讨论了溶液常见的共存金属离子种类、质量分数对CdS光催化降解罗丹明B的影响.结果表明:共存离子Cu2+对CdS光催化降解罗丹明B起抑制作用,Ag+对CdS光催化降解罗丹明B没有显著影响,而共存离子Fe3+ 和Pr3+ 能显著地提高纳米、本体CdS光催化剂降解罗丹明B的降解速率,最佳的离子质量分数分别为催化剂用量的0.5% 和10%.  相似文献   

17.
目的合成Ag负载SnO2/TiO2复合光催化剂,并对其在废水处理中的应用加以研究。方法以钛酸四丁酯、无水乙醇和四氯化锡为原料,采用光还原法制备载Ag纳米SnO2/TiO2光催化剂,以罗丹明B为模型污染物,借助XRD和UV-Vis等测试手段研究了SnO2/TiO2复合光催化剂的UV-Vis吸收光谱和光催化活性。结果纳米SnO2/TiO2光催化剂的最佳钛锡比为156∶1时的光催化剂具有较高的光催化活性;在氙灯照射下,Ag负载SnO2/TiO2的活性明显增强,具有很强的可见光活性。废水处理实验结果表明,太阳光照射2 h,炼油厂废水COD值由原始的844 mg/L降低至472mg/L,去除率为44.08%,照光5 h,COD去除率为76.78%,且色度和气味均全部去除。载Ag纳米SnO2/TiO2复合光催化剂(摩尔比为1∶1)对炼油厂废水COD有较高的去除效果。结论以最佳工艺条件下制备的TiO2为原料,采用光还原法成功制备出载Ag纳米SnO2/TiO2复合光催化剂,适用于采油厂工业废水的处理,太阳光下照射5 h,COD去除率可达76.78%。  相似文献   

18.
本文采用超声分散方法制备WS2/TiO_2复合物,在光照条件下,对罗丹明B的降解效果进行了一系列研究.在确定WS_2与TiO_2的混合比例后,同时又对WS_2/TiO_2煅烧温度、煅烧时间、催化剂的用量、光照时间、光照功率、染料浓度等影响因素分别进行了讨论.实验结果表明,催化剂的量为1.00g/L、染料的初始浓度为10.00mg/L,WS_2/TiO_2(1∶11)、焙烧温度为350°C、焙烧时间为90min时,对罗丹明B染料的降解效果最佳.  相似文献   

19.
以TiCl4和La2O3为原料,海泡石为载体,采用过氧化氢络合物热分解法制得复合TiO2/La2O3/海泡石光催化剂.以罗丹明B为目标降解物,进行正交试验,研究得到制备的最佳条件.探讨了对甲基橙溶液的降解率的影响因素.在优化实验条件下,太阳光照150 min时,该光催化剂对罗丹明B的降解率达98%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号