首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
单晶铜线材在冷拉拔变形过程中的组织演化   总被引:1,自引:0,他引:1  
陈建  严文  王雪艳  范新会 《中国科学(E辑)》2007,37(11):1444-1454
采用光学金相、电子背散射衍射和透射电子显微镜对单晶铜线材拉拔变形的组织演化进行了分析. 发现单晶铜线材除了有少量的晶界之外, 还有枝晶和少量生长孪晶, 但凝固过程中所产生的枝晶在变形组织中却很难观察到. 在室温下拉拔变形过程中, 单晶铜线材的组织演化可分为 3 个阶段, 当真应变小于0.94时, 宏观尺度上晶粒没有发生明显的分裂, 从微观尺度上讲, 组织的演化为位错胞形成以及沿拉丝方向拉长的变形阶段; 真应变为0.94~1.96时, 宏观上出现晶粒分裂, 微观上胞块和沿{111}的MBs开始增多; 真应变大于1.96时, 宏观上晶粒分裂加剧, 形成纤维状组织, 微观上出现剪切变形的S带. 随变形量的增加, 由晶粒竞争生长形成的á100ñ丝织构转变为á100ñ, á111ñ以及比较弱的á112ñ丝织构, 剪切变形是织构组分转变的原因. 变形形成的界面, 其角度随变形量增加而增大. 真应变为0.94时, 界面属于小角度界面; 真应变为1.96时, 界面角度超过50°, 并在25°~30°高角度范围出现了由织构演化所形成的第2个峰.  相似文献   

2.
相比于传统的晶体择尤取向(晶体织构,简称织构),晶界面择尤取向是一个新的科学问题.系统地研究晶界面择尤取向的形成规律和演化机制对合理调控显微组织结构以显著改善材料的各种使用性能具有非常重要的科学意义和应用价值.本文利用基于体视学原理和电子背散射衍射技术的晶界特征分布五参数表征分析方法,研究了冷轧变形高纯铝(99.99%)再结晶晶界面的择尤取向问题.结果表明,在再结晶及晶粒长大过程中,晶界面择尤取向由最初的{2 2 3}晶面转变为{1 1 1}晶面,最后取向在{1 0 0}晶面上.分析指出,冷轧变形高纯铝再结晶组织中,小角度晶界(取向差介于2°~15°)是其晶界构成的主体部分;在晶粒长大过程中,晶体织构由{1 1 0}〈1 1 2〉黄铜织构为主转变为以{0 1 1}〈1 0 0〉高斯织构和{0 2 3}〈1 0 0〉织构共存为主,受晶面能和晶体织构的影响,小角度晶界一般择尤取向于可形成能量较低的倾侧型小角度晶界所对应的晶面上.这是导致高纯铝再结晶晶界面择尤取向随晶粒长大而发生上述规律性变化的主要原因.  相似文献   

3.
为了深入理解含Re镍基单晶高温合金高温低应力蠕变初期的蠕变行为和强化机制,本文利用电子显微学和能谱学等方法,从介观至原子尺度研究了DD6单晶高温合金在1100℃/140 MPa蠕变15 min后的界面位错组态、界面位错核心结构以及界面位错附近的合金元素分布情况.结果表明蠕变初期合金中的位错密度较低,只在局部形成位错网络,因此蠕变初期γ此蠕变界面形成的V形和台阶状凸起结构数量明显低于稳态蠕变初期(12h)时的,而且台阶状凸起结构(对应a/210160°混合型位错)明显多于V形凸起结构(对应a/2110刃型位错,由位错反应形成).蠕变初期形成的特殊形状的台阶状凸起结构是由于界面位错沿γ/γ′界面运动形成的,而Re等合金元素的共偏聚进一步验证了Re元素偏聚同界面位错的交互作用.  相似文献   

4.
采用X射线多功能四圆衍射仪测绘出GaN/GaAs(001)外延层中六角相的{0002}和{100}极图,结果表明外延层中六角相与立方相之间的取向关系为:{0001}∥{111},〈100〉∥〈112〉. 构建了相应的结构模型,并对{0002}和{100}极图进行了模拟. 六角相以该取向关系存在于立方相GaN外延层中时,两相界面处具有相应于六角相和立方相的层错结构. 分析立方相GaN外延层中形成六角相所导致的晶格畸变和能量变化可知,造成六角相分布特征的主要因素是平行于〈0001〉方向的两相界面处原子成键紊乱. 六角相按照该取向关系,从低温缓冲层内部或缓冲层与外延层界面处萌生,并以片状贯穿至外延层表面的分布特征所引起的外延层能量增加值最小.  相似文献   

5.
将Bishop-Hill最大功原理拓展于面心立方晶体{111}<112>孪生和{111}<110>滑移两种机制同时起作用的轴对称共生塑性变形过程之中. 系统研究了孪生对滑移不同临界剪切应力之比 对立方晶体标准投影三角形区各晶体取向的屈服应力状态以及相应活化滑移或/和孪生系的影响, 同时分析了取向空间里[100], [110]和[111]三个重要取向的Taylor因子及屈服强度各向异性的变化规律, 从微观晶体塑性理论本质上揭示了轴对称变形情况下拉伸和压缩屈服强度的不对称性; 引入了孪生能力取向因子概念, 建立了轴对称塑性变形取向空间塑性变形机构图. 在此基础上, 定性地解释了低层错能面心立方晶体在轴对称拉伸情况下形变织构的形成演变规律.  相似文献   

6.
从原子结合能和位错生成能入手,分别计算了在Co基底上沉积Cu薄膜和在Cu基底上沉积Co薄膜时,薄膜结构随沉积厚度增加所发生的变化.结果表明,在{100}纤维织构的Co基底上沉积Cu薄膜,当薄膜厚度达到3.33 nm时会在薄膜与基底界面产生错配位错,且随薄膜厚度增加,错配位错密度逐渐增大.在{100}纤维织构Cu基底上沉积Co薄膜,当薄膜厚度达到4.90 nm时,薄膜生长模式会由层状向岛状转变,薄膜为fcc结构.当厚度超过12.64 nm后会出现hcp结构.计算结果与实验得出的结论基本相符.  相似文献   

7.
采用先进的晶体相场模型,分别模拟了不同高温条件下的小角对称倾侧晶界,在施加应变下的晶界分解和亚晶界湮没的过程.研究表明:对于不靠近固-液共存温度的高温(T1)预熔化样品,施加应变下的晶界位错发生滑移运动,生成亚晶界和新的晶粒.随后,具有相反Burgers矢量的位错亚晶界相向运动,新晶粒不断吞噬旧晶粒而长大,最后发生亚晶界相遇湮没,亚晶界和预熔化区域消失,双晶转变为完整单晶.对于靠近固-液共存温度的高温(T2)预熔化样品,在应变作用下,生成的亚晶界相向运动,当接近到一定距离时,形成位错对偶极子,发生亚晶界位错结构二次转换,之后亚晶界运动反向,往回迁移运动,最后与另一列返回的亚晶界相向靠近,相互作用转变成"之"字形的亚晶界,然后湮没消失,整个体系转变为单晶.对于高温T2预熔化亚晶界,在应变作用下,形成位错对偶极子的过程中,偶极子的2个位错对的预熔化区域开始扩张、连通,形成近似棒状区域.这一过程的实质是高温预熔化区内部的原子晶格变软,使得在应变作用下,原子排列可以较容易的发生滑移和扭转变形,发生了不同类型的位错相互作用,出现了位错萌生、形核和增殖,位错分解和湮没等一系列位错反应,由此引起了位错的Burgers矢量方向的改变和亚晶界位错类型交换.  相似文献   

8.
以整体碳毡为预制体,无水乙醇为前躯体,N2做为载气和稀释气,在负压条件下,沉积温度为1050~1200°C,采用压力梯度ICVI工艺制备出C/C复合材料制品,采用偏光显微镜、扫描电镜、透射电镜分析材料的组织结构和断口形貌,利用三点弯曲测定了材料的弯曲强度.结果表明:制备的C/C复合材料基体组织结构在1050°C条件下为中织构与高织构并存的组织,当沉积温度上升为1100~1200°C时,热解碳为均一的高织构组织.制备试样的弯曲破坏应力应变曲线及断口形貌分析表明:断裂特征受热解碳与基体界面结合强弱的影响,弯曲断口以纤维断裂、纤维拔出为主,材料具有假塑性断裂特征,并且随着沉积温度的提高,热解碳基体与纤维的界面结合逐渐增强,断裂方式由假塑性断裂向脆性断裂逐渐转变.  相似文献   

9.
采用分子动力学方法模拟了4种初始结构的银纳米线沿[1 1 1]晶向拉伸的行为.考察了初始结构对位错产生和发展的影响,并进一步讨论其与最终断裂位置分布的关系.结果显示,单晶银纳米线的初始位错产生于表面并向两端发展,滑移面到达固定层后受阻,产生反射.应力持续集中于纳米线两端,进而产生颈缩,并最终导致在两端近似对称的断裂分布.与其相比,单孪晶界阻碍滑移发展,缩短了塑性形变的过程.位错在孪晶界迅速聚集形成局域熔融团簇,进而形成颈缩,而体系的其他位置则没有足够的应变响应时间,因此断裂集中在孪晶界,并呈理想的高斯分布.相对能量较高的小尺寸缺陷对纳米线初始位错的产生和发展无明显影响,仅在形变中期起到加强作用.单晶中的小尺寸缺陷没有改变应力分布,其对断裂分布的相对峰高略有影响.含缺陷的孪晶纳米线中,两者相互作用加强了应力集中,使最终断裂位置分布的半峰宽变窄.不同初始结构对金属纳米线的影响呈多样性,其相互作用的强弱也与具体微结构密切相关.  相似文献   

10.
利用扩展位错间的弹性作用能与层错能之间的平衡关系,对TiAl中〈101 〉和1/2〈11 〉型超点阵位错在不同位向、不同分解组态下的分解宽度进行了理论计算.结果表明,超点阵位错的分解宽度除了受层错能和位错性质(刃或螺)的影响外,还受弹性各向异性、超点阵位错类型及分解方式的影响. 在弹性各向异性的条件下,螺型1/2〈11 〉超点阵位错的分解宽度比具有相同层错能的螺型〈10 ]超点阵位错的分解宽度大,而刃型1/2〈11 〉超点阵位错的分解宽度则比〈10 ]超点阵位错的分解宽度小.计算了弹性各向异性条件下超位错发生二分、三分、四分及发生共面和非共面分解时其分解宽度的变化情况.这些结果为准确测定TiAl中的层错能和评估〈10 〉和1/2〈11 ]型超点阵位错的可动性提供理论支持.  相似文献   

11.
研究了18个取向B2结构Fe3Al单晶室温真空条件下的拉伸塑性变形, 发现随晶体取向不同, 切应力切应变曲线出现不同数目的线性硬化及抛物线软化阶段. 曲线上不同硬化率各阶段的形成与塑性变形中滑移系的数量、次滑移作用的强弱及二分超位错的运动和分解状态有关. 第Ⅰ阶段为单系滑移的易滑移段; 第Ⅱ阶段对应共轭滑移的出现, 硬化率较高; 第Ⅲ阶段表现为比较弱的次滑移作用, 硬化率较低; 第Ⅳ阶段除了多系滑移之外还伴随二分超位错的扩展及拖着反相畴(APB)的不全超位错运动, 硬化率最高; 第V阶段与分解了的单个超分位错的交滑移相关, 表现为软化. 随拉伸轴取向所处区域不同, 切应力切应变曲线硬化段的数目及同一阶段硬化率的大小也不同.  相似文献   

12.
研究了18个取向B2结构Fe3Al单晶室温真空条件下的拉伸塑性变形,发现随晶体取向不同,切应力切应变曲线出现不同数目的线性硬化及抛物线软化阶段.曲线上不同硬化率各阶段的形成与塑性变形中滑移系的数量、次滑移作用的强弱及二分超位错的运动和分解状态有关.第Ⅰ阶段为单系滑移的易滑移段;第Ⅱ阶段对应共轭滑移的出现,硬化率较高;第Ⅲ阶段表现为比较弱的次滑移作用,硬化率较低;第Ⅳ阶段除了多系滑移之外还伴随二分超位错的扩展及拖着反相畴(APB)的不全超位错运动,硬化率最高;第Ⅴ阶段与分解了的单个超分位错的交滑移相关,表现为软化.随拉伸轴取向所处区域不同,切应力切应变曲线硬化段的数目及同一阶段硬化率的大小也不同.  相似文献   

13.
对大厚度船用钛合金电子束焊接接头熔合区组织进行了研究,采用金相显微镜观察熔合区在不同厚度的微观组织特点,并通过透射电子显微镜对相形貌进行了分析.结果表明:熔合区晶粒从两端面向90mm处逐渐增大.显微组织从两端面交错生长的细长马氏体,向厚度中部逐步转变成相互平行具有一定方向性的马氏体束域.相形貌在两端面主要是由含有大量位错的初生α'相和相互平行且细小的针状马氏体组成,交界面上有少量β相析出.90 mm处在细长的针状马氏体之间形成短棒状的马氏体.熔合区显微硬度在60 mm处最低,90 mm处最高,上下表面处相当,这与组织有密切关系.由于电子束焊接温度分布和温度梯度的特点,造成熔合区在厚度上晶粒和相形貌尺寸的不均匀,使得界面成为焊缝的薄弱部位.  相似文献   

14.
人工合成的Cu2O材料多为1微米以下的纳米尺寸晶体.而尺寸在100微米以上的Cu2O单晶是由金属铜高温氧化获得的Cu2O通过区域熔融或水热重结晶法获得.本文叙述了由乙酸铜为前驱物合成Cu2O单晶的溶剂热合成法,非常方便地合成了大量高品质、尺寸在100~300微米范围的Cu2O单晶.X-射线单晶衍射分析和对大宗样品做了x-射线粉末衍射表征都证明,产物为空间群Pn3 m的立方Cu2O.  相似文献   

15.
X射线衍射结果表明, Ni50Mn19Fe6Ga25合金甩带样品在室温是L21结构, 并且存在[100]织构. [100]轴垂直于试样表面, 而[110]轴与带向成45度角, 并且在带向与带的法线方向确定的平面内. 应力测试表明沿带向存在拉应力, 对应择尤取向的晶粒拉应力的方向就是沿[010]方向. 原位X射线衍射变温分析表明, 未退火的样品降温时没有发生明显的马氏体转变, 而经900 K, 24 h去应力退火后的样品, 再降温时发生明显的由立方到四方的结构转变. 这表明沿[010]方向的拉应力阻止了马氏体转变.  相似文献   

16.
反应合成Ag(111)/SnO2(200)复合材料界面结构的DFT研究   总被引:1,自引:0,他引:1  
根据 HTEM 原位观察的 Ag/SnO2 电接触材料的两相界面结构, 建立了 Ag(111)/ SnO2(200)界面结构模型. 原子驰豫位移的计算结果显示, 驰豫引起界面原子严重错排, 破坏了点阵周期性排列. 界面区的O与Ag原子为达到稳定结构而彼此有靠近的趋势, 界面的结构驰豫是材料系统降低能量的一种方式. 界面附近态密度表明界面对材料的导电性有很大影响, 界面 O 原子的存在引起了材料导电性下降. 界面区域电子云和布居分析表明, 在Ag/SnO2界面结构中未形成 AgxOy 化合物, 且界面会导致电荷分布不均匀, 在整个材料系统内形成微电场, 影响电子传输和材料的导电性. 计算显示 Ag(111)/SnO2(200)界面结合较强, 界面结合能约为−3.50 J/m2.  相似文献   

17.
利用纳米力学探针对传统的淬火-回火中碳马氏体钢的微观硬度分布进行了评价. 在1000 mN载荷下, 硬度的标准偏差与平均值之比为15.4%, 而在9.8 N下的维氏硬度该比值为1.5%. 结合电子背散射分析和扫描电子显微镜观察表明, 纳米硬度值的分散并非主要来源于马氏体板条的晶体取向, 而是由于在亚微米尺度上微结构(如渗碳体的分布)的不均匀造成的. 对具有不同取向的钨单晶(001), (101)和(111)的纳米力学探针测量表明, 晶体取向造成的纳米硬度值分散性很小. 对另一种具有相同化学成分但经过热轧变形导致渗碳体分布更加细小而均匀的马氏体钢的纳米力学探针测量表明, 其纳米硬度值分散性比传统的马氏体钢要小得多. 这两个结果都进一步佐证了上述结论.  相似文献   

18.
从应力为应变、应变速率和温度的函数的状态方程出发, 导出包含应变硬化指数、应变速率敏感性指数和本文引入的温度敏感性指数、温度起伏指数, 建立了分析超塑性拉伸载荷稳定变形的微分本构方程和几何稳定变形的变分本构方程, 并根据塑性基本理论的普适条件, 进行了温度连续上升条件下和沿试样轴线存在温度不均匀条件下的载荷稳定变形和几何稳定变形的理论分析. 结果表明温度连续上升的快慢和温度的不均匀的大小对稳定变形有影响, 温度上升越快, 温度越不均匀, 载荷稳定和几何稳定所对应的均匀应变越小; 应变硬化效应是超塑性拉伸变形稳定性的必要条件, 在载荷失稳时并不同时产生几何失稳, 而是能持续一段均匀变形才出现; 在超塑性温度区, 恒温不是呈现超塑性的必要条件, 但是在变形过程中温度上升的越慢, 温度越均匀, 变形的稳定性越好.  相似文献   

19.
AlGaN/GaN结构中Al组分对2DEG迁移率有显著的影响,但对这种现象的机理分析非常欠缺,尚不清楚.结合最近研究的实验数据,采用多种散射机制联合作用的解析模型对变Al组分AlGaN/GaN结构中的二维电子气迁移率做了理论计算和分析,所考虑的散射机制包括声学形变势散射、声学波压电散射、极性光学声子散射、合金无序散射、界面粗糙散射、位错散射、调制掺杂远程散射等.发现势垒层Al组分增加引起的2DEG密度增大是造成各种散射作用发生变化的主要因素.77K下2DEG迁移率随Al组分的变化主要是由界面粗糙散射和合金无序散射决定,室温下这种变化则主要由极性光学声子散射和界面粗糙散射决定.计算的界面粗糙度参数与势垒层Al组分的函数关系说明,Al组分增大所造成的应力引起AlGaN/GaN界面粗糙度增大,是界面粗糙散射限制高Al异质结2DEG迁移率的一个重要因素.  相似文献   

20.
微成形中尺寸效应研究的进展   总被引:1,自引:0,他引:1  
微纳米尺度下微细工件塑性变形中会出现尺寸效应,即随着工件尺寸的减小材料的应力应变关系、塑性成形性能和摩擦系数等成形工艺参数呈现出与常规尺寸工件的塑性变形不同的特点,对于尺寸效应的研究是微成形工艺研究的基础.本文首先综述了实验观察到的各种尺寸效应现象,如随着晶粒尺寸的减小塑性变形机理发生变化,从而导致Hall-Petch关系的变化.然后,介绍了为描述材料应力应变关系中出现的尺寸效应而提出的各种材料模型,其中考虑表面层晶粒体积分数、工件尺寸与晶粒尺寸的比值、应变梯度等因素的影响对经典塑性塑性力学模型进行的修正可以从现象学的角度描述尺寸效应,而基于位错运动、统计存储和几何必须位错密度的演化、晶界滑动等塑性变形机理的的本构模型,不仅能更准确地描述尺寸效应等塑性变形行为,而且能更深入地揭示尺寸效应的物理本质.另外,对于尺寸因素与极限应变的关系和摩擦中呈现的尺寸效应研究也进行了介绍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号