共查询到10条相似文献,搜索用时 0 毫秒
1.
群优化是一种随机的群体搜索策略.针对粒子群算法易陷入局部最优和收敛速度慢等不足,提出了根据粒子的能量自适应调整参数的改进算法.该算法基于动力学和热力学的理论,计算每个粒子的能量值,并将优化过程中的群体视为热力学的某一状态,通过退火温度和粒子的能量动态调整算法中的惯性参数,达到对"惰性"粒子的原速度方向给予较大的牵引力的目的.优化过程中,随着系统温度的降低,惯性参数逐渐减小,有利于问题的收敛.算法中采用了带极值扰动策略,加速粒子跳出局部最优的能力.数值实验结果表明,该算法具有收敛精度高和收敛速度快的特点,可快速有效的求解约束和非约束优化问题. 相似文献
2.
3.
基于混合粒子群优化算法的故障特征选择 总被引:3,自引:0,他引:3
通过将遗传算法和粒子群优化算法相结合,提出了混合粒子群优化算法(HPSO),用于机械故障特征选择问题.此方法在对粒子进行优化的同时选择部分优良的粒子进行遗传交叉和变异操作,增强了算法跳出局部极值的能力.某导弹运输车减速器齿轮故障特征选择试验结果表明HPSO可以快速、有效地求得优化特征集,其性能优于PSO和GA. 相似文献
4.
提出一种自适应进化粒子群优化算法(AEPSO),以提高多目标优化 PSO算法的性能.AEPSO算法把非支配排序技术、自适应惯性权重和特殊的变异操作引入到PSO算法中,来提高算法的全局搜索能力和粒子的多样性.与常用的整体加权方法来处理多目标优化问题不同,AEPSO算法采用非劣解排序来引导粒子的飞行,以改进算法的收敛性,同时采用特殊的变异操作防止早熟收敛并增加优化解的多样性.所提算法的有效性经过四种代表性benchmark函数进行验证,并与几种典型同类型算法进行比较.该算法已成功地用于合金材料的多目标优化设计.实验结果表明AEPSO算法能够较好地兼顾收敛精度与优化解的多样性,满足多目标优化设计的要求. 相似文献
5.
针对KK分布的参数估计,首先介绍了半经验估计法,然后提出了一种基于粒子群优化的估计方法。该方法将杂波数据统计直方图与KK分布概率密度函数在部分采样点上的差异作为代价函数,通过粒子群优化搜索参数的最优值。通过蒙特卡罗方法对半经验估计法在权重参数不同时的性能进行了仿真,然后分析了杂波数据样本点数的多少等因素对所提算法精度的影响,最后基于实测合成孔径雷达图像杂波数据对该算法进行了验证。仿真结果表明,该算法对KK分布参数具有良好的估计性能,KK分布与K分布等相比,对合成孔径雷达图像杂波数据具有更强的拟合能力。 相似文献
6.
基于自适应粒子群优化的盲源分离 总被引:2,自引:0,他引:2
针对现有的盲源分离算法性能大多依赖于非线性函数的选取问题,提出了一种基于自适应粒子群优化(adaptive particle swarm optimization,APSO)的盲源分离算法。该算法以分离信号的负熵为目标函数,根据分离信号的状态自适应地调整惯性因子,克服了收敛速度和信号恢复质量之间的矛盾。仿真实验表明,该算法的性能对源信号的概率密度性质没有依赖性,因而能很好地分离亚高斯和超高斯信号的混合信号,并且能有效地避免早熟收敛问题,具有较快的收敛速度,分离效果好。 相似文献
7.
在求解高维空间中复杂多峰函数的优化问题时,传统的粒子群算法在收敛速度和局部搜索能力等方面表现出严重不足。针对这些问题,提出了一种基于最优评价的改进自适应粒子群算法(IAPSO),引入了改进的速度迭代公式,利用对每次迭代后种群的一系列最优值的评价来控制惯性权重的增幅,并设置对速度和位置的变异机制来防止搜索陷入局部最优。相关实验表明,在对高维空间中的复杂多峰函数进行优化求解时,改进粒子群算法IAPSO的表现比常规粒子群算法更加优越。 相似文献
8.
基于对不同粒子群算法(PSO)中惯性权重、全局收敛性、收敛精度和速度的分析,提出了一种新的全局最优值自适应变化的粒子群算法(LAPSO).并采用该方法对三种不同的基准函数进行了测试,将LAPSO测试结果与典型的收敛粒子群算法(LKPSO)和扩散粒子群算法(LWPSO)进行了比较.结果表明:自适应粒子群算法具有收敛速度快、进化精度高的特点,是一种新型全局收敛粒子群算法. 相似文献
9.
粒子群优化算法是一种新型的群体智能算法,具有参数少、使用方便、效果好等优点,因而得到了广泛应用.为了改进粒子群算法的性能,在自适应粒子群算法和模拟退火粒子群算法的基础上提出基于混沌映射的自适应退火型粒子群算法,在局部最优解附近添加混沌扰动算子,使其具有突跳能力,进而提高全局搜索能力;将传统的惯性因子改为双重选择策略,不... 相似文献
10.
基于自适应量子粒子群算法的FIR滤波器设计 总被引:4,自引:0,他引:4
针对量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法的参数控制方式,提出了一种自适应调节方法,该方法根据粒子之间的位置关系来设定参数值,给出了具体的设计思想与实现步骤。然后针对有限脉冲响应(finite impulse response,FIR)数字滤波器的优化设计实质,即多参数优化问题,通过适当的编码方式将改进的QPSO算法(adaptive QPSO,AQPSO)应用在其优化设计中,设计了低通和带通FIR数字滤波器。实验结果表明,AQPSO在收敛速度、鲁棒性及优化效果等方面都优于遗传算法(genetic algorithm,GA)、PSO算法及QPSO算法,说明了AQPSO算法的有效性和可行性。 相似文献