首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对履带式车辆内部噪声级和噪声频谱进行了测试,分析了主要噪声源,给出了驾驶室中噪声的空间分布。行驶时车辆内部各点的声压级均大于100 dB(A),在驾驶室中的噪声分布呈现前低后高、上低下高的特性。发动机的噪声辐射及其对车体结构的动态激励是驾驶室中最主要的噪声源,而行走系统对驾驶室内噪声的影响相对次要。倍频程曲线表明,低频处的声压级明显高于中高频处的声压级。  相似文献   

2.
轿车车内噪声品质偏好性评价方法的研究   总被引:1,自引:0,他引:1  
针对汽车噪声品质主观评价所需周期长、可重复性差且仅能比较出具有较明显差别的噪声样本等问题,在研究声品质客观量化的基础上,提出了一种以心理声学客观参数来描述噪声主观评价结果的计算方法.以6辆同类轿车匀速行驶时的车内噪声样本为评价对象,采用成对比较法进行声品质主观评价,计算各噪声样本的主要心理声学客观参数,通过多元线性回归分析,建立了声品质偏好性主观评价客观量化的数学模型.模型结果表明,相对于噪声分析中常用的A计权声压级和线性声压级,心理声学客观参数更适合于描述车内的噪声品质,其中响度和尖锐度是匀速行驶工况下车内声品质的主要影响因素.  相似文献   

3.
公路交通噪声预测模型   总被引:6,自引:0,他引:6  
基于声传播的基本特性.提出了一个简化的公路交通噪声预测模型。该模型的推导是根据A计权声压级计算公式,采用常规噪声测量方法估计预测模型参数得出的,同时根据汽车噪声源引起的地面效应以及涡流对声波传播的影响,对模型进行了修正。利用该模型可以预测一个稳态源的声压级LA(如汽车起步和停车时)和移动声源的时间平均声压级LAepτ,(如一段时间内的公路交通噪声)。仿真结果表明,几何散布、地面效应和涡流是影响交通噪声传播的重要因素;在对LAepτ,瞬态测量时,必须有足够的测量时间以确保机动车采样具有代表性。实地测量验证了该预测模型的有效性。  相似文献   

4.
电动螺旋桨飞机运行中机舱内噪声,严重影响驾驶员和乘客乘坐的舒适性,因而对其舱内噪声特性研究十分必要。本文以某型电动螺旋桨飞机为研究对象,对其运用大涡模拟计算螺旋桨旋转产生的气动噪声并将其作为舱内噪声的边界条件,采用FEM、BEM耦合理论得到封闭声腔下舱内声振耦合声场分布,通过试验场点与数值场点来对比验证。研究表明,随着螺旋桨转速升高,在飞机的头部和尾部处声压级较高,舱内场点总声压级试验结果与数值计算结果非常吻合,在飞机巡航时人耳处总声压级最大误差为3.6%。以人耳处A计权为目标值,通过响应面法优化飞机舱内噪声,建立了人耳处总声压级(计权A)与各个试验因素(材料、厚度、面积)之间二次方模型,结果显示人耳处总声压级(计权A)降低了12dB。证明了计算电动螺旋桨飞机舱内噪声方法的准确性,为舱内噪声优化提供了一种简单有效的方法。  相似文献   

5.
目前公路交通噪声预测结果与实际情况存在较大差别,主要原因是声源预测模型存在不足。为了提高交通噪声预测结果的准确性,通过考虑车辆声源的实际高度,运用声学仿真软件Virtual. lab建立竖向高度与车辆声源实际情况一致的声源模型。对受声点的预测结果分析表明:与等效声源模型相比,考虑声源实际高度的噪声模型更符合道路实际情况,提高预测结果的准确性;在3 m高声屏障下道路交通状况全为重型车时预测结果差值最明显,两种声源模型综合噪声差值为1. 71 d B,315 Hz时达到频谱峰值差值3. 03 d B,为道路交通噪声控制提供参考依据。  相似文献   

6.
高速列车头型近场与远场噪声预测   总被引:4,自引:0,他引:4  
建立了某头型的1∶8缩比三车编组气动噪声仿真模型,采用大涡模拟获得车身湍流脉动压力,基于FW-H方程和声扰动方程分别获得远场噪声和近场噪声,从而建立一整套头型气动噪声预测方法.远场测点总声压级的仿真结果与风洞试验结果相差小于2.0dB(A),频谱变化趋势相同,量级相差较小,表明基于FW-H方程得到远场噪声的可行性.基于声扰动方程能够获得头型关键部位的总声压级,通过对比量级发现,转向架部位总声压级量级远大于其他部位,这与传声器阵列识别结果相吻合,从而验证了声扰动方程获得近场噪声结果.对比头型各部位湍流脉动总压力级和总声压级发现,转向架和排障器量级大于车窗、鼻锥和车体;与湍流脉动总压力级相比,总声压级分布更为均匀,量级更小.  相似文献   

7.
快速准确地实现伪码捕获是扩频通信研究的关键。在实际应用中,通常会存在噪声干扰和多普勒效应的影响,导致捕获难度变大。传统的串行捕获或并行捕获法存在捕获时间长、低信噪比环境下难以实现捕获或难以克服多普勒效应的影响等。详细研究了多普勒频移对伪码捕获的影响,利用FFT的算法进行伪码捕获,并对多普勒频移进行修正,通过仿真,证明了此种方法可以在低信噪比和较大多普勒效应下准确地实现伪码的快速捕获。  相似文献   

8.
针对不同直径二维圆柱的风噪声,采用大涡模拟和FW-H方程声类比的方法进行计算,将基准模型的计算结果与他人计算和实验结果进行对比,分析不同直径二维圆柱的远场声场特征.研究表明:基准模型的数值模拟结果与实验值非常接近,说明了本文计算方法的适用性;远场采样点的声压级频谱峰值频率随着圆柱直径的增大而减小,同根据斯特罗哈数为0.2的理论值计算的峰值涡脱频率接近;10~38mm直径工况远场采样点的总声压级随着直径的增大基本上呈线性增加趋势;总声压级和A计权总声压级随雷诺数的增加,呈现在亚临界区内增加、而在接近临界区时减小的变化趋势.  相似文献   

9.
高速列车车头曲面气动噪声的数值预测   总被引:4,自引:1,他引:3  
利用映射法生成高速列车头部流场的六面体贴体网格。采用三维大涡模拟法(LES)计算高速列车流线型头部的瞬态外流场,利用Lighthill-Curle声学比拟理论预测高速列车头部诱发的气动噪声。研究结果表明:气动噪声在很宽的频带内存在,是一种宽频噪声;在低频时,声压幅值较大,随着频率升高,幅值下降;当来流速度一定时,距离气动噪声源越远,总声压级越低,但总声压级的衰减幅度减少;随着列车运行速度增加,诱发的噪声加大,但距离车头曲面越远,总声压级的增幅越小;同一噪声源在不同受声点引起的噪声频谱曲线基本相似,控制列车运行过程中产生的脉动压力,能够减少气动噪声。  相似文献   

10.
高速列车乘客室内轮轨激励噪声的贡献度分析   总被引:3,自引:0,他引:3  
建立了高速列车头车-轨道的耦合动力学仿真模型、车身的有限元模型、乘客室的声学边界元模型,计算出了由轨道不平顺引起的乘客室内的噪声分布状况.利用声传递矢量(ATV)技术,分析了乘客室面板对声压最大点的贡献度,得出了如下结论:当列车运行速度为200km/h时,各场点的A声级在62.6~66.7dB之间变化;300km/h时,各场点的A声级在65.2~71.1dB之间变化;要降低声压最大场点的噪声,宜对后部端墙上的门及车底第三块板采取措施.  相似文献   

11.
生命探测雷达根据人体的体动、心跳和呼吸所产生的多普勒效应探测生命信息,是灾后搜救幸存者的重要工具.呼吸具有周期性,起伏的胸腔的回波比较强,其多普勒频移比较容易探测.呼吸频率通常是不均匀的,导致变化的胸腔具有多点反射,环境噪声强,据此建立了多个多普勒频移信号组合生命回波模型.研究用MUSIC谱估计从低信噪比回波中探测生命信息的方法,给出了探测处理框图.针对高信噪比回波和低信噪比回波,分别用FFT和MUSIC谱估计方法在一个雷达距离分辨单元上进行了生命信息探测仿真.仿真结果:FFT对高信噪比回波能检测出目标,低信噪比回波谱中生命信息被噪声谱线淹没;MUSIC谱估计能抑制噪声谱线,低信噪比回波谱中生命信息也比较明显,可以检测生命信息,表明MUSIC谱估计方法可以更可靠地在噪声背景下进行生命信息探测.  相似文献   

12.
作为涡扇发动机的一个关键噪声源,随着涵道比的不断加大,风扇噪声在飞机起飞时对整机噪声的贡献量也日益增加;因此预测风扇噪声对飞机噪声适航评估工作有极大意义。采用Boeing风扇噪声预测算法,结合飞机起飞航迹,利用MATLAB软件编程,经过多普勒效应修正、几何发散衰减修正和大气吸声衰减修正,得到起飞时风扇噪声预测模型。以某型发动机为算例,计算出实际飞机起飞时噪声适航审定中所需测量的每隔0. 5 s动态声压级的预测值。把最终得到的有效感觉噪声级预测值与欧洲航空安全局提供的有效感觉噪声级真实值进行对比,验证了该模型的准确性;此模型能有效降低新飞机的研发成本和风险,缩短噪声适航审定周期。  相似文献   

13.
高速列车转向架部位气动噪声数值模拟及降噪研究   总被引:1,自引:0,他引:1  
基于Lighthill声学理论,采用三维、LES大涡模拟和FW-H声学模型对高速列车转向架部位气动噪声进行数值模拟,并提出降噪改进意见.研究结果表明:转向架部位气动噪声在很宽的频带内存在,无明显的主频率,是一种宽频噪声;各监测点气动噪声频谱在低频时幅值较大,随着频率的升高,幅值下降,1/3倍频程A声压级主要集中在315~1 250 Hz频率范围内;当来流速度一定时,距离气动噪声源越远,声压级幅值和总声压级越小;在列车转向架部位设置裙板后,运行速度为300 km/h时,车外声压级幅值较无裙板时有所减小,平均降幅约为8%,总声压级平均降幅1.3 dBA;适当增加裙板面积后,声压级幅值平均降幅达到12%,总声压级平均降幅2.08dBA,降噪效果较明显.  相似文献   

14.
运用SoundPLAN软件,以南京市城市道路现状为基础,利用我国声环境导则中的道路噪声预测模式,建立了普通城市道路(非高架、隧道等)噪音预测通用模型.并根据实际需要,选择影响噪音的主要因素(车流量、车速、车道数、车型比),利用通用模型分析这些交通管制因素对道路噪声的影响.分析结果表明:噪声随交通量的增加而增加;随车速的增加,噪声先缓慢降低后快速直线增加;随车道数的增加,噪声有所增加,且离道路中心点越近,噪声的增幅越大;随大型车比例的增加,噪声增速变慢.通过该研究可得到各种交通管制因素对噪声变化的影响,并能为城市道路噪声的预防和控制提供一定的依据.  相似文献   

15.
以点源模型为基础,将螺旋桨桨叶空化体积等效为旋转单极源,将旋转单极源离散为均匀分布在旋转轨迹上的有限个固定声源,结合边界元方法可以在频域内计算任意边界条件下的螺旋桨空化噪声.以4148螺旋桨为对象,在已知单个桨叶空化体积的条件下,首先基于点源模型计算了单个桨叶的空化噪声,计算结果同Ffowcs Williams-Hawkings (FW-H)方程计算结果较为相符;然后计算了整桨空化噪声,可见螺旋桨旋转效应对空化噪声的近场声指向性影响较大,对远场声指向性影响可以忽略.  相似文献   

16.
原子频标光纤长距离传递的稳定度损失分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究利用长距离光纤链路进行原子频标传递遭受的稳定度损失,建模分析了光纤传输系统中强度噪声、色散和温度对光纤频标传递系统的影响。分析结果表明,除强度噪声外,其他因素的影响大小均与频标频率值无关;气温导致光纤链路长度的变化是劣化长期稳定度的主要因素,必须利用数十纳秒范围的高分辨率时延补偿才能保证频标的无损传递;激光器的频率噪声和光纤色散的综合作用会劣化频标传递的中短期稳定度,但可以通过色散控制与补偿技术抑制消除其影响;强度噪声是影响原子频标短期稳定度的主要因素,对于10 MHz的频标信号而言,接收端信噪比在110 dB以上才能保证原子频标秒稳定度损失优于10-13/s。  相似文献   

17.
为了在车身设计阶段降低车内噪声,以HyperMesh软件建立的车身声固耦合模型为研究对象,提出一种改进的遗传算法优化车身板件厚度.采用Hammersley实验设计方法,建立白车身一阶整体模态、车身质量、车内目标点最大声压级响应面.以目标点最大声压级为性能指标,改进的遗传算法用于车身板件厚度优化.目标点声压级最大值降低4...  相似文献   

18.
旋转点声源空间声场的频域精确解   总被引:6,自引:2,他引:4  
在任意运动点怕辐射频域解的基础上,推导了旋转点声源在空间任一点处的声压计算公式,该公式不需要附加条件,适合于任何近场或远场,由此讨论了简谐源作旋转运动时的声场方向性特征,研究了源频率及旋转频等对声声声压的影响,研究表明:声场分布具有强的空间指向性;旋转频率的变化将伴随着多普勒效应的出现;源自身频率的将改变谐波范围。  相似文献   

19.
列车在高架铁路运行时辐射的噪声与路基线路存在较大差异,特别是当线路采用了声屏障后,高架结构辐射的噪声对沿线环境的影响将显现.文中应用动力学基本理论建立了车-桥线路的耦合模型,获得了列车运行时轮轨之间的作用力,将其作为高架结构的统计能量分析的输入,研究了高架结构振动与声辐射,并应用高架结构的振动测试,进行了模型验证.应用该模型研究了200km/h速度下列车运行引起的高架结构噪声辐射,分析了轨道垫板的刚度变化对高架结构声辐射的影响,得出了优化轨道垫板的刚度可以提高高架结构声屏障的总体降噪效果的结论.  相似文献   

20.
针对国内高速列车的简化结构模型,采用Virtual Lab Acoustics专业声学求解器,建立了车厢结构声场耦合分析模型,对车厢结构模态、室内空腔模态及室内声振耦合系统进行了模型化分析.理论分析结果表明:在21.24 Hz和35.53 Hz处,车身结构模态的振动频率和空腔模态的振动频率接近,产生共振;在同一水平面上场点声压呈现强弱交替分布,随着频率的增加,车厢内部同一平面上沿横向和纵向的干涉条纹增加;不同测点声压级差异明显,噪声空间分布不均;在20~38Hz频段,声压级处于80 dB以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号