首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
盾构井深基坑围护结构变形规律及信息化施工研究   总被引:1,自引:0,他引:1  
深基坑工程围护结构受力变形的现场监测对保证基坑的安全稳定至关重要。以北京地铁10号线某盾构竖井深基坑工程为背景,阐述了地铁盾构井的监测方案,对桩体水平位移、钢支撑轴力、桩身弯矩及桩侧土压力等项目进行了现场监测,并分析了施工开挖过程对桩体水平位移、钢支撑轴力、桩身弯矩及桩侧土压力的影响。分析结果表明:基坑开挖过程中,围护桩的最大水平位移的发生位置逐渐下移,在顶板完成后,位于距离顶板8 m的位置处;第二道钢支撑在基坑开挖过程中受力始终最大;桩体最大弯矩值约为设计值的50%;桩侧土压力层状分布较为明显。  相似文献   

2.
结合北京某地铁车站基坑工程实际工程地质条件和水位地质条件,给出围护桩监测方案。通过对基坑工程西区中围护桩水平位移、钢支撑轴力的监测数据进行分析,得到了一些有价值的规律。结果表明:桩体水平位移能直接反应围护桩的变形特性,是基坑安全评价的重要指标。钢支撑对桩体变形有明显的限制作用,在钢支撑作用点处,桩体水平位移有明显的拐点,在两道钢支撑之间有个偏向基坑内凸曲线,开挖截止到基坑底部,围护桩变形最大的部位,位于最低两根钢支撑之间的凸曲线上,此点大概在基坑深度的2/3处。桩体最大水平位移随着土体开挖呈下降趋势,基坑开挖到底板时,基本稳定在基坑深度的2/3处。钢支撑轴力的变化与温度、土层性质、基坑开挖方式、速度和下层钢支撑的安装及拆除密切相关。  相似文献   

3.
深基坑变形规律现场监测   总被引:6,自引:0,他引:6  
给出了北京地铁某车站深基坑围护和变形监测方案,对基坑变形规律进行了现场监测研究,重点分析了基坑的水平变形、锚索内力和钢支撑轴力变化规律。结果表明,基坑开挖的深度与无支撑暴露的时间对围护桩的变形、锚索内力及钢支撑的轴力影响较大。随着基坑开挖深度的增加和钢支撑的施加,围护桩的变形形态由向坑内的前倾型曲线逐渐变为弓形。围护桩的水平位移、钢支撑的轴力也随着基坑开挖深度的增加而增大。随着钢支撑的施加,围护桩水平位移及锚索内力都趋于稳定,说明钢支撑、围护桩和预应力锚索联合支护形式能够有效地控制基坑变形,保证地铁车站安全施工。  相似文献   

4.
针对既有深基坑坑外通常存在临时堆载的情况,依托某建筑物地下室深基坑工程,运用ABAQUS有限元数值建模并结合实测数据,分析了坑外偏压荷载大小、荷载位置及荷载分布宽度对既有深基坑支护结构受力和变形的影响。研究结果表明:坑外偏压荷载大小不同情况下基坑两侧支护结构水平位移和弯矩差异较大,左侧(有荷载侧)桩体的水平位移大于右侧(无荷载侧),并且右侧桩体会发生逆向位移;左侧桩体最大弯矩随着荷载的增大而增加,右侧桩体最大弯矩呈减小的趋势;荷载位置对左侧桩体影响较大,而对右侧桩体影响较小,并且坑外荷载距基坑越远对既有深基坑支护结构影响越小;左侧桩体水平位移和最大弯矩随着荷载分布宽度增加而逐渐增大,而右侧桩体水平位移在减小且其最大弯矩略有增加;在对深基坑进行设计时,需要考虑坑外荷载的影响。  相似文献   

5.
为了研究地铁基坑开挖过程中围护结构的安全性,以广东省某地铁车站为工程实例.介绍了基坑开挖方法,利用MIDAS/GTS对基坑开挖过程进行了模拟,并与不同工况下的桩身位移变化和支护轴力监测进行了比较.结果表明,围护桩顶和桩底位移较小,围护桩的最大位移位置随开挖深度的变化而移动,最大位移位置逐渐下降,最大位移接近第三梁内支撑的顶部.模拟轴力结果显示:标准段距离盾构井约50 m内冠梁呈受拉状态.模拟和现场轴力监测数据显示:第一道标准段内支撑轴力大于盾构井内支撑轴力,随着开挖深度的增加,轴力最大值内支撑位置也在下移,最终出现在盾构井第三道内支撑上.  相似文献   

6.
给出了森公地铁车站深基坑围护和变形监测方案,对基坑变形规律进行了现场监测研究,重点对基坑围护桩的水平位移和钢支撑的轴力变化进行了现场监测。结果表明:桩顶水平位移反映围护结构的顶部变形情况,能直接反映围护结构的变形特性,是评价围护结构安全状况的重要指标;在有钢支撑作用的情况下,围护桩变形最大的部位位于距桩顶2/3基坑开挖深度处;钢支撑轴力随开挖深度增加而增加,其大小变化与开挖方式、开挖速度以及天气等因素有关。  相似文献   

7.
针对长春卫星广场节点范围内快速路结构工程与既有车站主体结构交叉的问题,综合现场实测和无预加轴力不对称开挖的模拟分析,对原有的基坑开挖方案进行了模拟和优化。结果表明:当采用无预加轴力不对称开挖方案时,基坑桩体水平位移呈现出朝向基坑且上大下小的变形特征,其中由于土体开挖引起荷载变化造成的最大变形量占总变形量的75%以上;采用增加200 kN 预加轴力的优化方案后,基坑桩体水平位移呈中间大两端小的变形特征,桩体的最大水平位移减小了10.84 mm,比原方案减小52.1%,与无预加轴力模拟的结果相比,西侧最大变形增大了0.31 mm,东侧最大变形减小了0.82 mm;方案优化后,两侧基坑变形趋于平衡并关于主体对称,减小了结构的剪力;桩体最大水平变形的位置下移至桩顶以下9 m 处,有效约束了桩体上部的变形。  相似文献   

8.
以某异形基坑工程为研究对象,采用FLAC3D有限差分法对其开挖和支撑过程进行数值模拟,得到SMW工法桩体水平位移和钢支撑轴力的变化规律,并将结果与类似封闭基坑数值模拟计算结果进行对比分析,最终得出异形基坑施工的变形特性。  相似文献   

9.
针对桩-钢支撑支护形式的基坑工程,应用基于离散元理论的颗粒流软件PFC2D建立桩-钢支撑支护基坑颗粒流数值模型,对比分析有钢支撑和无钢支撑支护基坑开挖过程桩体水平位移、坑底隆起和接触力变化规律。结果表明:在有钢支撑支护的情况下,基坑开挖过程中桩体水平位移远小于无钢支撑支护的桩体水平位移;在基坑开挖过程中,第2、 3道钢支撑起到了主要作用。  相似文献   

10.
在综合管廊建设过程中,常面临开挖基坑失稳问题;而钢板桩支护由于自身施工快速、隔水性好等良好性能,能够保证开挖临空面不会失稳破坏;因此在基坑支护领域得到了广泛应用。结合南京市某综合管廊工程,针对工程中采用的钢板桩加二道钢支撑支护方式,开展了管廊基坑监测工作,获取了管廊基坑的深层土体水平位移、地面沉降量、钢支撑轴力等监测值。研究结果表明,从第二道支撑底往下开挖至基坑底的过程中土体水平位移变化量最大,水平位移最大值出现在地表;地面沉降量随着基坑开挖而增大,沉降速率逐渐减小;钢支撑的轴力值第二道支撑大于第一道,并受开挖速度及支撑架设时间等因素影响。研究成果可为相关管廊工程的设计、施工、监测提供工程借鉴。  相似文献   

11.
深基坑桩锚支护的数值模拟   总被引:6,自引:0,他引:6  
对利用FLAC3D进行深基坑数值模拟时经常遇到的一个关键而又常被忽视的结构单元连接问题进行了详细探讨,阐述了结构单元的连接方法、种类与性质,利用结构单元连接理论对某一采用桩锚联合支护的深基坑开挖工程进行了模拟分析,研究了桩的最大水平位移、弯矩、内力以及锚杆轴力、附近建筑物基础底面沉降随施工过程的变化规律。指出桩的最大水平位移并不是发生在桩顶处,而是在基坑开挖到的位置附近;桩的弯矩在整个桩长范围内正负交替出现;桩的受力主要为压力,而且最大值也是出现在基坑开挖到的位置附近;锚杆轴力在端部最大,然后逐渐减小,在尾部几乎为零;附近建筑物基础在靠近基坑一端有被抬升的趋势,而另一端则有下降的趋势。  相似文献   

12.
针对洛阳地铁1号线武汉路站半幅盖挖深基坑工程中混凝土支撑轴力异常增大,甚至远远超过设计控制值的现象,结合监测数据和施工现场实际工况,采用数值模拟的方法探讨了引起混凝土支撑轴力增大的主要因素。结果表明基坑明挖侧荷载、钢支撑位置、钢支撑轴力均对混凝土支撑的轴力大小产生显著影响,造成本基坑混凝土轴力增大的主要原因在于明挖侧的施工机械和运载车辆等所产生的较大荷载,因此工程中应控制基坑边的荷载值,并且在开挖过程中及时架设钢支撑和及时补充钢支撑的轴力。  相似文献   

13.
利用FLAC3D数值模拟软件,按照实际施工工序模拟基坑开挖支护全过程,得到了桩锚支护结构以及基坑外土体沉降和基坑侧壁水平位移随基坑开挖的变形规律:随基坑开挖深度的增加,基坑外土体沉降逐渐增大,变化曲线呈"勺状"分布;基坑顶和基坑侧壁水平位移随开挖深度增加均逐渐增大且都在开挖至基坑底时位移最大;桩身弯矩最大值处基本出现在基坑开挖深度1.5 m以上的位置,最大负弯矩值为76.7;锚索轴力最大位置出现在锚索的端头处,且从端头位置向端尾位置逐渐减小,而第1排至第3排锚索最大值逐渐增大,说明支护结构中第2、3排锚索起主要作用,验证了深基坑桩锚支护的可行性。  相似文献   

14.
为研究高水位红砂岩地层基坑降水开挖引起的变形规律,以兰州东方红广场地铁车站深基坑工程为背景,对基坑降水开挖过程中桩体水平位移以及坑周地表沉降进行现场监测.采用有限差分软件Flac3D对基坑降水开挖过程中的位移进行模拟计算.监测结果表明:随着基坑开挖深度的增加,桩体最大水平位移的位置逐渐下移,最终靠近基坑底部,大约在坑底以上1~2 m;地表最大沉降值出现在距离基坑边5~7 m处,大约0.29~0.41倍的基坑开挖深度;桩间水土流失是造成地表沉降过大的主要原因.模拟结果与实测结果对比分析得出:地表沉降模拟值与监测值变化趋势基本一致;桩体在距地面小于12 m部分其水平位移模拟值与实测值非常接近,大于12 m部分实测值明显大于模拟值.  相似文献   

15.
基于岩土数值软件MIDAS GTS NX,建立考虑土体与深基坑相互作用的三维计算模型,并通过模型分析钢支撑预加轴力及刚度等力学参数对深基坑支护结构变形的影响,根据参数分析对钢支撑施工方案进行优化设计。结果表明:预加轴力为设计值的50%~150%,并且钢支撑直径为609 mm、壁厚为14 mm和直径为609 mm、壁厚为16 mm时对基坑支护结构变形和周边地表沉降的限制作用较好;经过优化后基坑地下连续墙的水平位移和周边地表沉降虽有微弱增加,但都处于监测安全范围值以内,同时节省了大量工程成本。  相似文献   

16.
为填补兰州地区地铁深基坑桩撑支护设计和施工的空白,以兰州地铁试验段深基坑支护工程为例,对桩撑支护设计和施工过程中围护结构的变形规律进行研究.结果表明:基坑开挖初期,桩身呈向坑内变形的前倾型曲线;基坑开挖过程中,预应力施加后,桩体位移呈基本恢复到平衡位置的短暂状态;随着基坑的进一步开挖和内撑的施工,桩身变形曲线逐渐呈")"形变化,最大水平位移发生的位置也随之下移.基坑开挖过程中,桩体最大位移位于基坑开挖面上方,一般出现在桩体的中部4~10m范围,桩底附近有少量位移,说明桩身内外侧通常均匀配筋的设计思路不尽合理,目前规范将嵌固段作为固定端的设计方法有待完善.  相似文献   

17.
为了研究土体开挖卸荷扰动的条件下,围护结构水平位移的变化规律,以沈阳市地下综合管廊(南运河段)5号盾构始发井深基坑工程为背景,采用MIDAS\\GTS大型有限元软件建立了深基坑三维地层模型,对基坑施工的全过程进行全面、动态的模拟,计算得出了围护结构在各开挖步后的位移云图和变形曲线,并将数值计算结果与监测数据进行对比分析。研究结果表明:①围护结构的水平侧移具有显著的角部效应,影响范围约为基坑开挖深度的2.5~3.0倍,在基坑角部附近较小,而后呈逐渐增大的趋势;②围护结构的水平侧向位移对基坑整体稳定有重要意义,钢支撑的架设能够有效限制基坑向内变形;③数值计算与实测数据有较好地吻合,平均误差为10%,且计算值偏小;④基坑长边和短边的最大位移值均在开挖结束后,短边最大水平位移值为10.8 mm,长边最大位移值为16.7 mm,小于警戒值25 mm。  相似文献   

18.
以郑州市某地铁车站的深基坑工程为研究背景,运用有限元分析软件MIDAS/GTS NX建立整体有限元模型,对基坑开挖的每步施工过程进行数值模拟。探讨了深基坑开挖过程中地连墙的水平位移、周围地表沉降及内支撑轴力分布情况,用于判定深基坑在开挖过程中的稳定性和安全性。同时分别对深基坑开挖过程中周围的建筑物沉降、墙顶水平位移和沉降及支撑轴力进行了监测,并与数值模拟值进行对比。结果表明:理论计算值与现场监控值变化趋势基本一致,结果误差不大,均在设计报警值以内;墙体水平位移随着开挖深度增加而增大,且最大的位移逐渐向下移动,土体地表沉降的变形基本随着开挖深度的增大而逐渐增大,但内支撑轴力不随开挖深度的增大而增大,而是呈现波动的变化趋势;在深基坑开挖过程中,应重点对开挖引起的对墙体变形、地面过大变形和支撑结构内力进行监测。研究结果表明监控量测与数值模拟相结合能较好地运用于基坑开挖,也可为类似基坑工程的开挖提供一定的借鉴作用。  相似文献   

19.
地铁车站深基坑开挖面大、变形控制等级高,而南昌又处在砂性土地区,土层黏聚力较小,与其他地区地质差异较大,基坑开挖与支护可借鉴的经验较少。因此,需要对其变形规律进行研究,为其他车站深基坑设计与施工提供一定的参考。本文以南昌轨道交通某深基坑工程为背景,通过现场实测并结合FLAC3D建立计算模型,对其开挖与支护进行了数值模拟分析,通过计算得出不同开挖阶段的地表沉降、围护桩和周围土壤分层水平位移、轴力的变化规律。研究结果表明:围护桩分层水平位移和轴力以及周围地表沉降直接反映了基坑变形特性,而钢支撑的施加则明显限制了基坑的变形。现场监测结果和数值模拟结果得到的规律基本一致。  相似文献   

20.
深基坑桩锚支护变形模拟分析   总被引:1,自引:0,他引:1  
以济南市省会文化艺术中心工程为背景,用FLAC3D数值模拟软件,对深基坑变形作了模拟分析.将模拟数据与滑动式测斜仪测得的变形监测数据进行对比分析,得出结论:在桩-锚支护体系下,基坑最大水平位移随开挖下移,最终出现在桩体的中部,靠近第二道锚索,模拟变形曲线和测斜仪监测结果吻合良好;锚索轴力最大值在端头,且中间排锚索轴力小于上下两排.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号