首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
固体氧化物燃料电池   总被引:1,自引:0,他引:1  
论述了固体氧化物燃料电池(SOFC),分析了固体氧化物燃料电池在电介质和电极材料面的性能和特点,介绍了固体氧化物燃料电池目前的应用和发展前景。  相似文献   

2.
固体氧化物燃料电池是一种全固体结构的燃料电池,是当前新能源开发的主要方向之一.阳极做为燃气的电化学氧化场所对于电池性能发挥着至关重要的作用.  相似文献   

3.
综述了导电陶瓷材料在固体氧化物燃料电池中的应用现状,分别从燃料电池的关键组件(电解质材料、阴极材料、阳极材料和连接材料等方面)对导电陶瓷的要求及其研究现状进行了讨论,提出目前研究广泛的导电陶瓷在固体氧化物燃料电池中存在问题。  相似文献   

4.
基于COMSOL Multi-physics 5.3a仿真平台,建立三维模型对固体氧化燃料电池进行数值计算。考虑板式固体氧化物燃料电池单体内部的气体流动、组分质量分数、电化学反应过程,研究不同工况下的气体分布、电流密度和极化情况,分析电池长度、工作温度、进气成分对固体氧化物燃料电池工作性能的影响。研究结果表明:固体氧化物燃料电池入口处气体质量分数较大,电化学反应速率也较快;在高电流密度下,入口氧气的质量分数会显著影响电池性能,而在低电流密度下,氧气质量分数不是影响电池电压的主要因素;当电池工作温度升高时,电池内部很多参数会发生变化。  相似文献   

5.
概述固体氧化物燃料电池(SOFC)的原理,综述了ZrO2基固体电解质型燃料电池的研究进展状况,提出了一些有待解决的问题。  相似文献   

6.
张永魁  刘彦 《科技资讯》2009,(19):150-150,152
固体氧化物燃料电池(SOFC)是继MCFC之后新一代的高温燃料电池,本文将建立SOFC系统物质平衡的数学模型及能量平衡的数学模型,并对模型进行计算与分析。  相似文献   

7.
固体氧化物燃料电池固体氧化物燃料电池(SOFC)是一个将化石燃料中的化学能转换为电能的发电装置。这里所谓的化石燃料可以是天然气、煤气、汽油或柴油以及其它碳氢化合物。能量转换是通过电极上的电化学反应来进行的,图1是传统发电与SOFC电站的一个比较。从中可以看出,利用SOFC进行能量转换没有燃烧和机械过程,从而极大地提高了能量转化效  相似文献   

8.
为了解决传统稳态性控制能力较差的问题,提出一种基于模糊PID动态反馈调节的中温型固体氧化物燃料电池稳态控制模型。利用模糊变结构PID神经网络构建被控对象模型,在电池输出增益稳定条件下,采用模糊PID动态反馈调节方程进行控制目标函数分析,根据电池的电压输出权重进行模糊自适应学习,构建电池隐含层权重学习的时滞双曲比例微分调节反馈单元,在边值控制节点中进行电池稳态性输出的鲁棒性训练,求取电池电压输出的最优解,完成稳态控制模型的构建。仿真结果表明,该方法的稳态控制误差平均约为0.06。得出使用该方法进行中温型固体氧化物燃料电池输出控制的稳态性较好,降低了中温型固体氧化物燃料电池的输出振荡。  相似文献   

9.
采用固相法和甘氨酸-硝酸盐法(GNP)分别合成了La0.7Sr0.3Cr0.5Mn0.5O3-δ固体氧化物燃料电池阳极材料:LSCM-S(固相法)和LSCM-G(GNP).扫描电镜分析表明LSCM-G材料粒径比LSCM-S小.空气中250-850℃下,LSCM-S比LSCM-G电导率稍高;850℃下在甲烷中,LSCM-G比LSCM-S电导率高,850℃下在H2中两者电导率几乎相同,约为0.2S/cm.H2程序升温还原说明LSGM-G与H2发生还原反应的温度更低,反应活性更高.LSCM-G比KSCM-S更适合作为固体氧化物燃料电池阳极材料.  相似文献   

10.
论述了电动汽车(EV)、电动汽车用镍氢电池、锂离子电池、质子交换膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)及相关材料的研发现状、产业化前景,指出以电动汽车代替燃油内燃机汽车,以氢能代替碳基燃料,是当前运输业的主要发展方向。  相似文献   

11.
 与摩擦纳米发电机(TENG)单纯收集环境机械振动能量相比,与TENG相结合的新型复合能源电池能够收集多种形式的能量,具有更宽的工作频率范围和更好的输出性能。近年来,复合型能源电池逐渐向小型化、便携化、智能化发展。分别从TENG与太阳能电池、电磁发电机、压电纳米发电机、多种类型发电机以及其他能源电池相结合等几个类别,综述了复合型能源电池在工作模式、结构、能量输出、应用等方面的研究进展,讨论了复合型能源电池面临的挑战。对其发展前景进行了展望,认为复合型能源电池需要进一步在集成化、大功率、长寿命等方面深入开展研究。  相似文献   

12.
对于未来的空间任务,锂离子蓄电池因其优秀的质量比能量、体积比能量以及循环寿命而比传统的贮能电源,如镉镍蓄电池和氢镍蓄电池表现出更大的优势。上海空间电源研究所开了矩形锂离子蓄电池,包括6、12、30和50Ah四种型号。6、12、30和50Ah锂离子蓄电池的质量比能量分别达到106,113,134和130Wh/kg,而体积比能量分别达到232,258,335和308Wh/L.在0.5C放电倍率、100%DOD的测试条件下,循环寿命大于200次,并且具有良好的高倍率放电性能和低温放电性能。  相似文献   

13.
无线网络节点的太阳能最优利用效率   总被引:1,自引:0,他引:1  
为了提高在无线传感器网络中太阳能电池供电节点的能量利用效率,研究了太阳能电池与无线传感器网络节点能量之间的供求关系.采用传感器网络节点能量的自适应供求算法,构建了在标准光强下太阳能电池输出功率与传感器网络节点所耗功率的自适应平衡模型.实验结果表明:该模型体现了太阳能电池与网络节点能量的自适应供求关系,确保了传感器节点长期稳定地工作,尽可能地延长了传感器网络的生存周期,为无线传感器网络节点能量的设计提供了理论依据.  相似文献   

14.
太阳能是一种取之不尽、用之不竭的可再生清洁能源,对太阳能电池的研究与开发也变得日益重要;但是太阳能电池的转化效率低,制备工艺复杂,使得成本一直居高不下,远不能达到大规模应用的要求。本文在现有的材料,电池结构和生产工艺的基础上,研究其转化效率不高的影响因素,进而提出优化方案。  相似文献   

15.
对于未来的空间任务,锂离子蓄电池因其卓越的重量比能量、体积比能量以及循环寿命而比传统的镉镍蓄电池表现出更大的优势.而锂离子蓄电池组能否通过空间飞行器轨道的环境特点,对6ICP30锂离子蓄电池组进行了热真空、高低温交变、辐照等试验,部分验证了锂离子蓄电池在空间应用的可能性.  相似文献   

16.
Shao Z  Haile SM  Ahn J  Ronney PD  Zhan Z  Barnett SA 《Nature》2005,435(7043):795-798
High energy efficiency and energy density, together with rapid refuelling capability, render fuel cells highly attractive for portable power generation. Accordingly, polymer-electrolyte direct-methanol fuel cells are of increasing interest as possible alternatives to Li ion batteries. However, such fuel cells face several design challenges and cannot operate with hydrocarbon fuels of higher energy density. Solid-oxide fuel cells (SOFCs) enable direct use of higher hydrocarbons, but have not been seriously considered for portable applications because of thermal management difficulties at small scales, slow start-up and poor thermal cyclability. Here we demonstrate a thermally self-sustaining micro-SOFC stack with high power output and rapid start-up by using single chamber operation on propane fuel. The catalytic oxidation reactions supply sufficient thermal energy to maintain the fuel cells at 500-600 degrees C. A power output of approximately 350 mW (at 1.0 V) was obtained from a device with a total cathode area of only 1.42 cm2.  相似文献   

17.
1 Results The conversion efficiency of sunlight to electricity is limited around 25%,when we use single junction solar cells. In the single junction cells,the major energy losses arise from the spectrum mismatching. When the photons excite carriers with energy well in excess of the bandgap,these excess energies were converted to heat by the rapid thermalization. On the other hand,the light with lower energy than that of the bandgap cannot be absorbed by the semiconductor,resulting in the losses. One way...  相似文献   

18.
The ever-increasing environmental problems and energy challenges have called urgent demand for utilizing green, ef-ficient, and sustainable energy, thus promoting the develop-ment of new technologies associated with energy storage and conversion systems. Amongst a wealth of energy storage devices, Li/Na/K/Zn/Mg ion batteries, metal-air batteries, and lithium–sulfur/all-solid-state batteries together with su-percapacitors as advanced power sources have attracted con-siderable interest due to their conspicuous merits of high en-ergy density, long cycle life, and good rate capability. In the energy conversion systems, solar cells and fuel cells can be considered as mainstream renewable energy resources once their manufacturing cost has decreased to an affordable level. However, the developments of advanced power sources de-pend critically on advances in materials innovation. There-fore, to promote the practical applications of these promising systems, developing high-performance electrode materials has been taken into the center stage in current research areas from chemistry, physics, and materials science fields.  相似文献   

19.
纳米二氧化钛太阳能电池   总被引:1,自引:0,他引:1  
太阳能电池技术利用太阳能这种清结能源,为目前人类面临的能源短缺和非再生能源消耗所引起的环境问题提供了一个很好的解决途径。分析比较了各类太阳能电池的研究现状和优缺点,重点讨论了纳米二氧化钛太阳能电池工作原理及其影响光电转化效率的因素。  相似文献   

20.
针对现有便携式电源能量单一化的问题, 设计了一种基于光伏发电与压电发电技术的便携式电源装置。以太阳能与人体产生的动能作为能量来源, 分别通过太阳能电池板与压电陶瓷对两种能量来源进行收集利用。通过光伏发电和压电发电技术设计的太阳衣和压电发电鞋能优势互补、提高发电效率。同时对太阳能发电装置和压电发电装置单独工作和共同工作两种情况进行数据测量和分析。实验结果表明, 该装置符合便携式电源装置的技术指标要求, 克服了传统的便携型电源装置因受外界环境干扰而不能持续供电的缺限, 从而提高了发电效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号