首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Siveter DJ  Sutton MD  Briggs DE  Siveter DJ 《Nature》2004,431(7011):978-980
Pycnogonids (sea spiders) are marine arthropods numbering some 1,160 extant species. They are globally distributed in depths of up to 6,000 metres, and locally abundant; however, their typically delicate form and non-biomineralized cuticle has resulted in an extremely sparse fossil record that is not accepted universally. There are two opposing views of their phylogenetic position: either within Chelicerata as sister group to the euchelicerates, or as a sister taxon to all other euarthropods. The Silurian Herefordshire Konservat-Lagerstatte in England (approximately 425 million years (Myr) bp) yields exceptionally preserved three-dimensional fossils that provide unrivalled insights into the palaeobiology of a variety of invertebrates. The fossils are preserved as calcitic void in-fills in carbonate concretions within a volcaniclastic horizon, and are reconstructed digitally. Here we describe a new pycnogonid from this deposit, which is the oldest adult sea spider by approximately 35 Myr and the most completely known fossil species. The large chelate first appendage is consistent with a chelicerate affinity for the pycnogonids. Cladistic analyses place the new species near the base of the pycnogonid crown group, implying that the latter had arisen by the Silurian period.  相似文献   

2.
Harvey TH  Butterfield NJ 《Nature》2008,452(7189):868-871
Most Cambrian arthropods employed simple feeding mechanisms requiring only low degrees of appendage differentiation. In contrast, post-Cambrian crustaceans exhibit a wide diversity of feeding specializations and possess a vast ecological repertoire. Crustaceans are evident in the Cambrian fossil record, but have hitherto been known exclusively from small individuals with limited appendage differentiation. Here we describe a sophisticated feeding apparatus from an Early Cambrian arthropod that had a body length of several centimetres. Details of the mouthparts resolve this taxon as a probable crown-group (pan)crustacean, while its feeding style, which allowed it to generate and handle fine food particles, significantly expands the known ecological capabilities of Cambrian arthropods. This Early Cambrian record predates the major expansions of large-bodied, particle-handling crustaceans by at least one hundred million years, emphasizing the importance of ecological context in driving adaptive radiations.  相似文献   

3.
Zhang XG  Siveter DJ  Waloszek D  Maas A 《Nature》2007,449(7162):595-598
Crown-group crustaceans (Eucrustacea) are common in the fossil record of the past 500 million years back to the early Ordovician period, and very rare representatives are also known from the late Middle and Late Cambrian periods. Finds in Lower Cambrian rocks of the Phosphatocopina, the fossil sister group to eucrustaceans, imply that members of the eucrustacean stem lineage co-occurred, but it remained unclear whether crown-group members were also present at that time. 'Orsten'-type fossils are typically tiny embryos and cuticle-bearing animals, of which the cuticle is phosphatized and the material is three-dimensional and complete with soft parts. Such fossils are found predominantly in the Cambrian and Ordovician and provide detailed morphological and phylogenetic information on the early evolution of metazoans. Here we report an Orsten-type Konservat-Lagerst?tte from the Lower Cambrian of China that contains at least three new arthropod species, of which we describe the most abundant form on the basis of exceptionally well preserved material of several growth stages. The limb morphology and other details of this new species are markedly similar to those of living cephalocarids, branchiopods and copepods and it is assigned to the Eucrustacea, thus representing the first undoubted crown-group crustacean from the early Cambrian. Its stratigraphical position provides substantial support to the proposition that the main cladogenic event that gave rise to the Arthropoda was before the Cambrian. Small leaf-shaped structures on the outer limb base of the new species provide evidence on the long-debated issue of the origin of epipodites: they occur in a set of three, derive from setae and are a ground-pattern feature of Eucrustacea.  相似文献   

4.
The evolutionary success of arthropods, the most abundant and diverse animal group, is mainly based on their segmented body and jointed appendages, features that had evolved most likely already before the Cambrian. The first arthropod-like animals, the lobopodians from the Early Cambrian, were unsclerotized and worm-like, and they had unjointed tubular legs. Here we describe the first three-dimensionally preserved Cambrian lobopodian. The material presented of Orstenotubulus evamuellerae gen. et sp. nov. is the smallest and youngest of a lobopodian known. O. evamuellerae shows strikingly detailed similarities to Recent tardigrades and/or onychophorans in its cellular-structured cuticle and the telescopic spines. It also shows similarities to other, longer known lobopodians, but which are ten times as large as the new form. These similarities include the finely annulated body and legs, which is characteristic also for Recent onychophorans, and paired humps continuing into spines situated dorsally to the leg insertions, a feature lacking in the extant forms. The morphology of O. evamuellerae not only elucidates our knowledge about lobopodians, but also aids in a clearer picture of the early evolution of arthropods. An example is the single ventral gonopore between a limb pair of O. evamuellerae, which indicates that a single gonopore, as developed in onychophorans, tardigrades, pentastomids, myriapods and insects, might represent the plesiomorphic state for Arthropoda, while the paired state in chelicerates and crustaceans was convergently achieved. Concerning life habits, the lateral orientation of the limbs and their anchoring spines of the new lobopodian imply that early arthropods were crawlers rather than walkers.  相似文献   

5.
Sutton MD  Briggs DE  Siveter DJ  Siveter DJ 《Nature》2005,436(7053):1013-1015
'Articulated' rhynchonelliformean brachiopods are abundant shelly fossils, but the direct fossil record of their soft parts was hitherto confined to a single pyritized trace possibly representing a lophophore. Anatomical knowledge of extinct rhynchonelliformeans relies heavily on analogies to extant species; these analogies are untested for stem-group clades. The Silurian Herefordshire (UK) Konservat-Lagerst?tte (about 425 Myr bp) yields exceptionally preserved three-dimensional fossils that provide unrivalled insights into the palaeobiology of a variety of invertebrates. The fossils are preserved as calcitic void in-fills in carbonate concretions within a volcaniclastic horizon, and are reconstructed digitally. Here we describe a stem-group rhynchonelliformean specimen from this deposit; it most probably belongs in the order Orthida. A robust ridged pedicle with distal rootlets is preserved, together with a lophophore and other soft-tissue structures. The pedicle morphology is novel, urging caution in inferring stem-group rhynchonelliformean anatomy from that of crown-group species. Smaller brachiopods are attached to the specimen; these include a probable atrypide, with pedicle and marginal setae preserved.  相似文献   

6.
We investigated two new arthropods from the Maotianshan-Shale fauna of southern China in the course of our research on life strategies, particularly predation, in Early Cambrian marine macrofaunal biota. One form clearly belongs to the so-called "great-appendage" arthropods, animals that were, most likely, active predators catching prey with their first pair of large, specialized frontoventral appendages. Based on this, we hypothesize that the new species and many others, if not all, of the "great-appendage" arthropods were derivatives of the chelicerate stem lineage and not forms having branched off at different nodes along the evolutionary lineage of the Arthropoda. Rather, we consider the "great-appendage" arthropods as belonging to a monophyletic clade, which modified autapomorphically their first pair of appendages (antennae in general arthropod terminology) into raptorial organs for food capture. The second new form resembles another Maotianshan-Shale arthropod, Fuxianhuia protensa, in sharing a head made of only two separate segments, a small segment bearing oval eyes laterally, and another bearing a large tergite, which forms a wide shield freely overhanging the subsequent narrow trunk segments. This segment bears a single pair of rather short anteriorly directed uniramous appendages, considered as the "still" limb-shaped antennae. Particularly the evolutionary status of head and limbs of these two forms suggests that both are representatives of the early part of the stem lineage toward the crown-group of Arthropoda, the Euarthropoda. These forms appear rather unspecialized, but may have been but simple predators. This adds to our hypothesis that predation was a common, if not dominant feeding strategy in the Cambrian, at least for arthropods.  相似文献   

7.
Until recently, intricate details of the optical design of non-biomineralized arthropod eyes remained elusive in Cambrian Burgess-Shale-type deposits, despite exceptional preservation of soft-part anatomy in such Konservat-Lagerst?tten. The structure and development of ommatidia in arthropod compound eyes support a single origin some time before the latest common ancestor of crown-group arthropods, but the appearance of compound eyes in the arthropod stem group has been poorly constrained in the absence of adequate fossils. Here we report 2-3-cm paired eyes from the early Cambrian (approximately 515 million years old) Emu Bay Shale of South Australia, assigned to the Cambrian apex predator Anomalocaris. Their preserved visual surfaces are composed of at least 16,000 hexagonally packed ommatidial lenses (in a single eye), rivalling the most acute compound eyes in modern arthropods. The specimens show two distinct taphonomic modes, preserved as iron oxide (after pyrite) and calcium phosphate, demonstrating that disparate styles of early diagenetic mineralization can replicate the same type of extracellular tissue (that is, cuticle) within a single Burgess-Shale-type deposit. These fossils also provide compelling evidence for the arthropod affinities of anomalocaridids, push the origin of compound eyes deeper down the arthropod stem lineage, and indicate that the compound eye evolved before such features as a hardened exoskeleton. The inferred acuity of the anomalocaridid eye is consistent with other evidence that these animals were highly mobile visual predators in the water column. The existence of large, macrophagous nektonic predators possessing sharp vision--such as Anomalocaris--within the early Cambrian ecosystem probably helped to accelerate the escalatory 'arms race' that began over half a billion years ago.  相似文献   

8.
Dahn RD  Davis MC  Pappano WN  Shubin NH 《Nature》2007,445(7125):311-314
The genetic mechanisms regulating tetrapod limb development are well characterized, but how they were assembled during evolution and their function in basal vertebrates is poorly understood. Initial studies report that chondrichthyans, the most primitive extant vertebrates with paired appendages, differ from ray-finned fish and tetrapods in having Sonic hedgehog (Shh)-independent patterning of the appendage skeleton. Here we demonstrate that chondrichthyans share patterns of appendage Shh expression, Shh appendage-specific regulatory DNA, and Shh function with ray-finned fish and tetrapods. These studies demonstrate that some aspects of Shh function are deeply conserved in vertebrate phylogeny, but also highlight how the evolution of Shh regulation may underlie major morphological changes during appendage evolution.  相似文献   

9.
Maxmen A  Browne WE  Martindale MQ  Giribet G 《Nature》2005,437(7062):1144-1148
Independent specialization of arthropod body segments has led to more than a century of debate on the homology of morphologically diverse segments, each defined by a lateral appendage and a ganglion of the central nervous system. The plesiomorphic composition of the arthropod head remains enigmatic because variation in segments and corresponding appendages is extreme. Within extant arthropod classes (Chelicerata, Myriapoda, Crustacea and Hexapoda--including the insects), correspondences between the appendage-bearing second (deutocerebral) and third (tritocerebral) cephalic neuromeres have been recently resolved on the basis of immunohistochemistry and Hox gene expression patterns. However, no appendage targets the first ganglion, the protocerebrum, and the corresponding segmental identity of this anterior region remains unclear. Reconstructions of stem-group arthropods indicate that the anteriormost region originally might have borne an ocular apparatus and a frontal appendage innervated by the protocerebrum. However, no study of the central nervous system in extant arthropods has been able to corroborate this idea directly, although recent analyses of cephalic gene expression patterns in insects suggest a segmental status for the protocerebral region. Here we investigate the developmental neuroanatomy of a putative basal arthropod, the pycnogonid sea spider, with immunohistochemical techniques. We show that the first pair of appendages, the chelifores, are innervated at an anterior position on the protocerebrum. This is the first true appendage shown to be innervated by the protocerebrum, and thus pycnogonid chelifores are not positionally homologous to appendages of extant arthropods but might, in fact, be homologous to the 'great appendages' of certain Cambrian stem-group arthropods.  相似文献   

10.
Anomalocaridids were large predators of the Cambrian seas at the top of the trophic pyramid. Complete anomalocaridid specimens have been rarely discovered and the rigid isolated frontal appendages and mouthparts are more commonly preserved. Here we study new material of the frontal appendages from the Wulongqing Formation, Cambrian Stage 4, Series 2 near Kunming, eastern Yunnan. Two new forms of anomalocaridid frontal appendages are described, namely Anomalocaris kunmingensis sp. nov. and Paranomalocaris multisegmentalis gen. nov., sp. nov. The frontal appendage of A. kunmingensis sp. nov. probably comprises 15 podomeres of which the first one has a weakened skeletoned, the second one is armed with small spines, and the third one is armed with remarkably robust proximal ventral spines with 6 anisomerous auxiliary spines; paired auxiliary spines are associated with podomeres 4–14; podomeres 12–14 are armed with paired dorsal spines, and the last podomere bears 2 distal spines, one spine distinctly larger than the other. The frontal appendage of P. multisegmentalis tapered backwards, consisting of 22 visible podomeres; the most ventral spine is armed with 5 pairs of auxiliary spines, and podomeres 12–21 bear dorsal spines, the last podomere with 2 small distal spines. The new material provides additional evidence for our understanding of the diversity of anomalocaridids in the Cambrian. The morphology of these new finds may indicate the importance of different feeding strategies of anomalocaridids in the Cambrian ecosystem.  相似文献   

11.
Earliest known crown-group salamanders   总被引:25,自引:0,他引:25  
Gao KQ  Shubin NH 《Nature》2003,422(6930):424-428
Salamanders are a model system for studying the rates and patterns of the evolution of new anatomical structures. Recent discoveries of abundant Late Jurassic and Early Cretaceous salamanders are helping to address these issues. Here we report the discovery of well-preserved Middle Jurassic salamanders from China, which constitutes the earliest known record of crown-group urodeles (living salamanders and their closest relatives). The new specimens are from the volcanic deposits of the Jiulongshan Formation (Bathonian), Inner Mongolia, China, and represent basal members of the Cryptobranchidae, a family that includes the endangered Asian giant salamander (Andrias) and the North American hellbender (Cryptobranchus). These fossils document a Mesozoic record of the Cryptobranchidae, predating the previous record of the group by some 100 million years. This discovery provides evidence to support the hypothesis that the divergence of the Cryptobranchidae from the Hynobiidae had taken place in Asia before the Middle Jurassic period.  相似文献   

12.
The extraordinarily preserved, diverse arthropod fauna from the Lower Cambrian Maotianshan shale, central Yunnan (southwest China), represents different evolutionary stages stepping from stem lineages towards crown arthropods (also called euarthropods), which makes this fauna extremely significant for discussion of the origin and early diversification of the arthropods. Anatomical analyses of the Maotianshan shale arthropods strongly indicate that  相似文献   

13.
Jager M  Murienne J  Clabaut C  Deutsch J  Le Guyader H  Manuel M 《Nature》2006,441(7092):506-508
Arthropod head segments offer a paradigm for understanding the diversification of form during evolution, as a variety of morphologically diverse appendages have arisen from them. There has been long-running controversy, however, concerning which head appendages are homologous among arthropods, and from which ancestral arrangement they have been derived. This controversy has recently been rekindled by the proposition that the probable ancestral arrangement, with appendages on the first head segment, has not been lost in all extant arthropods as previously thought, but has been retained in the pycnogonids, or sea spiders. This proposal was based on the neuroanatomical analysis of larvae from the sea spider Anoplodactylus sp., and suggested that the most anterior pair of appendages, the chelifores, are innervated from the first part of the brain, the protocerebrum. Our examination of Hox gene expression in another sea spider, Endeis spinosa, refutes this hypothesis. The anterior boundaries of Hox gene expression domains place the chelifore appendages as clearly belonging to the second head segment, innervated from the second part of the brain, the deutocerebrum. The deutocerebrum must have been secondarily displaced towards the protocerebrum in pycnogonid ancestors. As anterior-most appendages are also deutocerebral in the other two arthropod groups, the Euchelicerata and the Mandibulata, we conclude that the protocerebral appendages have been lost in all extant arthropods.  相似文献   

14.
Liu J  Steiner M  Dunlop JA  Keupp H  Shu D  Ou Q  Han J  Zhang Z  Zhang X 《Nature》2011,470(7335):526-530
Cambrian fossil Lagerst?tten preserving soft-bodied organisms have contributed much towards our understanding of metazoan origins. Lobopodians are a particularly interesting group that diversified and flourished in the Cambrian seas. Resembling 'worms with legs', they have long attracted much attention in that they may have given rise to both Onychophora (velvet worms) and Tardigrada (water bears), as well as to arthropods in general. Here we describe Diania cactiformis gen. et sp. nov. as an 'armoured' lobopodian from the Chengjiang fossil Lagerst?tte (Cambrian Stage 3), Yunnan, southwestern China. Although sharing features with other typical lobopodians, it is remarkable for possessing robust and probably sclerotized appendages, with what appear to be articulated elements. In terms of limb morphology it is therefore closer to the arthropod condition, to our knowledge, than any lobopodian recorded until now. Phylogenetic analysis recovers it in a derived position, close to Arthropoda; thus, it seems to belong to a grade of organization close to the point of becoming a true arthropod. Further, D. cactiformis could imply that arthropodization (sclerotization of the limbs) preceded arthrodization (sclerotization of the body). Comparing our fossils with other lobopodian appendage morphologies--see Kerygmachela, Jianshanopodia and Megadictyon--reinforces the hypothesis that the group as a whole is paraphyletic, with different taxa expressing different grades of arthropodization.  相似文献   

15.
Van Roy P  Briggs DE 《Nature》2011,473(7348):510-513
Anomalocaridids, giant lightly sclerotized invertebrate predators, occur in a number of exceptionally preserved early and middle Cambrian (542-501?million years ago) biotas and have come to symbolize the unfamiliar morphologies displayed by stem organisms in faunas of the Burgess Shale type. They are characterized by a pair of anterior, segmented appendages, a circlet of plates around the mouth, and an elongate segmented trunk lacking true tergites with a pair of flexible lateral lobes per segment. Disarticulated body parts, such as the anterior appendages and oral circlet, had been assigned to a range of taxonomic groups--but the discovery of complete specimens from the middle Cambrian Burgess Shale showed that these disparate elements all belong to a single kind of animal. Phylogenetic analyses support a position of anomalocaridids in the arthropod stem, as a sister group to the euarthropods. The anomalocaridids were the largest animals in Cambrian communities. The youngest unequivocal examples occur in the middle Cambrian Marjum Formation of Utah but an arthropod retaining some anomalocaridid characteristics is present in the Devonian of Germany. Here we report the post-Cambrian occurrence of anomalocaridids, from the Early Ordovician (488-472?million years ago) Fezouata Biota in southeastern Morocco, including specimens larger than any in Cambrian biotas. These giant animals were an important element of some marine communities for about 30?million years longer than previously realized. The Moroccan specimens confirm the presence of a dorsal array of flexible blades attached to a transverse rachis on the trunk segments; these blades probably functioned as gills.  相似文献   

16.
It was suggested and eventually has been profferedthat the representatives of all extant phyla, including someminor group, occurred during the Cambrian radia-tions[1—10]. Many priapulid-like fossil worms have beenreported from Cambrian Lagerst?tten, such as the EarlyCambrian Chengjiang Lagerst?tte[11—16], the Middle Cam-brian Burgess Shale[17], and the Middle Cambrian Kailifauna[18]. The palaeoscolecidan worms from these Lager-st?tten have been regarded as either a stem group of thepri…  相似文献   

17.
Ramapithecines from China: evidence from tooth dimensions   总被引:1,自引:0,他引:1  
R K Wu  C E Oxnard 《Nature》1983,306(5940):258-260
Data obtained from ramapithecine specimens found in Asia, Africa and Europe have suggested the existence of two major subgroups, Ramapithecus and Sivapithecus, with Ramapithecus having pre-human status. Recently, however, it has been proposed that the fossils all belong to a single group, Sivapithecus, which is more closely related to the apes, in particular the orang-utan. Here we analyse data from a series of similar fossils which have been found in late Miocene coalfields in Lufeng, Yunnan Province, China. These include a number of almost complete jaws and five partial skulls which are more complete than any others so far known. A statistical analysis of the overall dimensions of the large number of teeth included in these finds shows that the differences between the groups previously assigned to Ramapithecus and Sivapithecus are greater than those found between the sexes in the most sexually dimorphic of the living great apes. Within the groups the distribution is bimodal and we suggest each group contains sex subgroups.  相似文献   

18.
Facivermis yunnanicus (Hou & Chen, 1989), from the Early Cambrian Chengjiang Lagerstatte, a worm-like fossil with 5 pairs of tentacles and a perceived shrunken end, has been regarded as related to polychaetes, later it has been variously interpreted as Iobopods, Pentastoma and Iophophorates. Newly discovered complete specimens by the ELI field team show that the taxon has, in addition to the 5 pairs of appendages, a pear-shaped trunk end bearing two or three circles of hooks. Accordingly based on these important morphological characters, reconsideration of its affinities is provided and the taxonomy is remedied herein. Because the five pairs of appendages of Facivermis yunnanicus resemble the appendages of the fore-trunk of Iobopod Miraluolishania (Liu & Shu, 2004), it seems that they are homologous structures. Therefore, the affinities of Facivermis are regarded here as being close to the Iobopods, in addition, the lobe-like appendages of Facivermis are very crucial to exploring the origin of the appendages of Iobopods and arthropods.  相似文献   

19.
带挠性伸展附件的航天器姿态动力学研究   总被引:16,自引:2,他引:16  
利用动量矩定理推导出带挠性伸展附件航天器的动力学方程。在挠性附件按指数规律和幂次规律伸展情况下,研究了附件伸展运动对弹性振动和航天器姿态的影响,得到了附件振动的振幅和姿态角速率随附件长度变化的渐近公式,得到航天器最大姿态偏差的估计式。结果表明:随着附件长度的增加,附件振动的振幅增大,而姿态角速率减小。最大姿态偏差值随着伸展速率的增加而减小。  相似文献   

20.
Boisvert CA 《Nature》2005,438(7071):1145-1147
One of the most marked transformations in the vertebrate transition to land was that of fins to limbs. This transformation involved not only the generation of morphological novelties (digits, sacrum) but also a shift in locomotory dominance from the pectoral to the pelvic appendage. Despite its importance, the transformation from pelvic fin to hindlimb is the least studied and least well-documented part of this transformation, which is bracketed by the osteolepiform Eusthenopteron and the early tetrapods Ichthyostega and Acanthostega, but is not directly illuminated by any intermediate form. Panderichthys is the closest tetrapod relative currently represented by complete fossils, but its pelvic fin skeleton has not been described. Here, I present the only known articulated pelvic fin endoskeleton and associated partial pelvis of Panderichthys. The pelvic girdle is even less tetrapod-like than that of the osteolepiform Eusthenopteron, but the pelvic fin endoskeleton shares derived characteristics with basal tetrapods despite being more primitive than the pectoral fin of Panderichthys. The evolution of tetrapod locomotion appears to have passed through a stage of body-flexion propulsion, in which the pelvic fins played a relatively minor anchoring part, before the emergence of hindlimb-powered propulsion in the interval between Panderichthys and Acanthostega.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号