首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
非高斯条件下基于粒子滤波的目标跟踪   总被引:22,自引:1,他引:22  
介绍了粒子滤波的基本思想和具体算法实现步骤,在给出的闪烁噪声统计模型基础上,将粒子滤波算法应用在雷达目标跟踪中,解决了闪烁噪声情况下的雷达目标跟踪问题.仿真结果表明,在满足高斯噪声条件下,扩展卡尔曼算法和粒子滤波算法跟踪性能相近,但若考虑雷达的闪烁噪声,则随着闪烁影响增强,扩展卡尔曼算法跟踪性能严重下降,而粒子滤波算法能继续保持较好的跟踪精度.  相似文献   

2.
针对标准粒子滤波算法粒子退化和贫化问题,提出了一种基于高斯-牛顿迭代思想的容积卡尔曼粒子滤波算法.该算法利用当前量测信息,使用容积数值积分原则通过以一组确定的点集和相应的权值直接计算非线性随机函数的均值和方差,避免了求导运算,并通过Gauss-Newton迭代方法对容积卡尔曼滤波(CKF)的非线性最小二乘问题进行求解,减小了线性化误差,以此来产生粒子滤波算法的重要性密度函数,使得迭代CKF产生的重要性密度函数更接近于真实后验概率分布,从而改进了滤波性能.仿真结果表明,与粒子滤波和CPF滤波相比,迭代CKF粒子滤波具有更高的估计精度.  相似文献   

3.
随着当前计算机性能的不断提高,粒子滤波算法日益受到人们的关注,因为其在非线性、非高斯系统和状态滤波等方面具有独到的优势,也被广泛应用到运动目标跟踪研究当中。  相似文献   

4.
一种新的粒子滤波目标跟踪算法   总被引:3,自引:0,他引:3  
为了进一步提高目标跟踪的性能,采用一种新的建议分布构造方法,即利用状态分割技术和平行扩展卡尔曼滤波技术构造建议分布.依据该方法构造的建议分布相对传统的方法提高了粒子滤波估计的准确性.同时,在新的跟踪算法框架中,将颜色模型和形状模型自适应地融合,并结合了一种新的模型更新方法.实验结果证明,该跟踪算法具有较强的适应性和有效性.  相似文献   

5.
针对复杂场景下目标跟踪算法存在的跟踪目标丢失漂移等问题,提出一种粒子滤波框架下基于卷积神经网络(convolutional neural network,CNN)的目标跟踪算法.该算法采用CNN提取跟踪目标的高层语义特征,并引入离线训练方式,提高训练效率以及特征提取的泛化能力;利用粒子滤波算法框架,实现目标运动状态的有效估计;同时采用长时与短时两种更新策略,并引入困难样本挖掘的在线训练方式,以适应目标外观变化与背景干扰等复杂情况.仿真实验结果表明本文算法能有效适应遮挡、光照、剧烈运动等场景.与多个当前的跟踪算法在公开测试样本下进行了结果比较和分析,验证了本算法在解决跟踪目标丢失漂移等问题上的有效性.   相似文献   

6.
粒子滤波算法中通常采用先验转移概率代替重要性函数,由此重要性密度函数对后验函数的偏差将增大。将小波去噪应用到粒子滤波过程中,降低了偏差,提高了粒子算法的滤波精度,并将该算法应用到目标跟踪的过程中,通过仿真证实该方法能够提高粒子滤波精度。  相似文献   

7.
针对无线传感器网络环境下的机动目标跟踪问题,提出了一种描述目标机动加速度的目标状态空间模型,以此模型为基础开发出基于粒子滤波的单目标和多目标跟踪算法.基本思想是:在状态空间中通过寻找一组传播的随机样本来获得近似后验概率分布,并以样本均值代替积分运算,从而求得最小状态方差估计.仿真结果表明,所提算法可以较好地解决无线传感器网络环境下的机动目标跟踪问题,速度跟踪精度、机动加速度跟踪精度均较经典分布式粒子滤波算法分别提高20%、27%.  相似文献   

8.
柱子滤波算法是近年来提出的解决非线性非高斯问题的一种较新的算法。本文阐述了柱子滤波的原理,及粒子滤波的改进算法,并将仿真结构结果与EKF进行了比较。  相似文献   

9.
针对粒子滤波算法时间复杂度高的问题,引入一种在滤波过程中粒子数可以根据过程噪声方差大小进行调整的自适应粒子滤波算法,即KLD-Sampling粒子滤波算法.该算法在保证一定滤波精度的前提下,可以有效地减少滤波过程中使用的粒子数,从而减小滤波时间,提高滤波效率.此外,分析了该算法中距离阈值和小区域阈值的选取与参与滤波粒子数的关系及其对算法性能的影响.仿真实验对分析结果进行了验证.  相似文献   

10.
针对复杂水下环境中声探测传感器获得的运动目标信息具有不确定性和模糊性等问题,提出了基于声探测传感器特点的高斯粒子滤波水下目标跟踪方法.基于粒子滤波理论,采用一阶自回归模型作为运动目标状态转移的依据,设计了由目标区域的面积特征和不变矩特征相融合的观测模型,解决了目标跟踪中的粒子权值的选取问题,克服了传统粒子滤波重采样问题,提高了复杂环境下目标跟踪结果的准确率.展示了应用高斯粒子滤波实现水下目标跟踪的过程.试验结果表明,该方法具有较好的鲁棒性和实时性,是复杂水下环境中目标跟踪的一种高效可行的新方法.  相似文献   

11.
针对噪声协方差不确定情况下容积卡尔曼滤波解决非线性目标跟踪中存在的问题,提出了一种优化的自适应容积卡尔曼滤波.首先根据新息序列和残差序列导出的线性矩阵方程得到噪声的协方差,基于新息序列与残差序列的相关性,推导出一种新的过程噪声协方差Q估计方法;然后采用残差序列对测量噪声协方差进行估计,利用加权因子将当前的噪声协方差矩阵与估计值组合成为新的测量噪声协方差阵R,有效避免了不准确状态估计的局限性.仿真结果表明:在时变噪声协方差的条件下,所提出的自适应容积卡尔曼算法的跟踪精度明显提高.  相似文献   

12.
为实现运动目标精确跟踪,克服跟踪过程中目标的非线性运动以及由目标形变、遮挡和光照等因素带来的影响,本文提出了一种改进的颜色粒子滤波方法. 算法从提高目标模型描述能力入手,首先对直方图加权函数进行了改进,使模型对区域特征描述更加合理;然后针对颜色直方图特征对光照明敏感、易受环境干扰等缺点,将目标由颜色特征空间映射到对光照稳定、抗几何失真能力强的局部熵特征空间,构建了颜色局部熵观测模型;同时设计了目标模板的自适应更新策略,当目标受到严重干扰的时候动态调节粒子数目. 实验结果表明相比传统的颜色粒子滤波算法,本文算法具有更好的鲁棒性,能够在存在遮挡、光照变化、非线性运动等情况下实现稳定跟踪.   相似文献   

13.
雷达目标跟踪量测系统常受到闪烁噪声干扰,导致传统滤波算法的滤波性能急剧下降甚至发散。针对标准粒子滤波算法存在粒子退化的缺陷,重采样环节引入禁忌搜索思想,提出了禁忌搜索扩展卡尔曼粒子滤波算法,驱散局部最优的粒子集,使其向全局最优位置靠近,提高采样粒子的有效性。结合交互多模型(IMM),将算法与IMM-PF算法进行仿真比较,结果表明该算法对机动目标具有较优的跟踪性能。  相似文献   

14.
针对粒子滤波算法在复杂环境下粒子数量显著增加导致跟踪实时性下降的问题,提出一种将背景差分引入到粒子滤波算法中的新算法.利用背景差分对图像处理后得到检测结果,将分布在已被检测为前景像素点上的粒子定义为重要性粒子,增大了其权值.实验结果表明,该算法能使用较少的粒子实现较好的跟踪,提高了跟踪的实时性.  相似文献   

15.
首先介绍粒子滤波的基本理论,然后构建粒子滤波视频目标跟踪系统的状态模型和观测模型,进而根据状态模型和观测模型提出一种基于粒子滤波的视频目标跟踪算法,并通过实际的视频目标跟踪系统对算法进行实验分析,说明粒子滤波算法在视频目标跟踪中的优越性.  相似文献   

16.
概括了在目标跟踪中常用的几种滤波算法,从目标模型建立到滤波器的算法原理进行了分析和归纳。这些算法各有特点.在不同的情况下它们的跟踪精度、实时性有很大差异。针对一种典型的目标运动,对其中有代表性的算法进行数据仿真,分析和验证了这几种典型滤波算法各项性能的差别。  相似文献   

17.
针对杂波背景下计算机视觉目标跟踪问题,提出一种非高斯噪声背景下计算机视觉目标跟踪方法.在视频目标运动模型和观测模型的基础上引入了柯西混合噪声模型,对非高斯噪声运动目标的状态进行建模;然后,在传统高斯噪声粒子滤波的框架内给出文中方法的具体实现步骤.针对大面积遮挡和夜晚光照改变的极端情况下对路上行驶的车辆进行实时跟踪实验,结果表明:文中方法明显提升极端杂波环境下的目标运动过程的建模精度,有效提升目标跟踪精度.  相似文献   

18.
粒子滤波(particle filter, PF)算法被广泛应用于视觉目标的跟踪,然而,在无人机视角下,摄像机与画面中的目标同时运动,导致了PF对目标运动状态的预测失效.针对此问题,提出一种面向无人机视角下的改进的粒子滤波跟踪算法——特征匹配引导的粒子滤波跟踪算法.首先,利用相邻两帧图像中目标物体尺度不变特征变换(scale invariant feature transform, SIFT)特征匹配的结果作为初次定位;然后,利用空间加权的HOG特征与PF相结合获取二次定位结果;最后,利用chamfer distance修正跟踪结果的SIFT特征点作为下一帧特征匹配的模板,从而循环产生准确的视频跟踪结果.比较试验表明,该算法有效地改善了传统PF跟踪算法在无人机视角下运动状态预测方程失效的问题,能够较准确地对运动目标进行跟踪.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号