首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
采用Gleeble-1500型热模拟机,对AZ61镁合金进行高温压缩实验,分析该合金在不同变形温度与应变速率条件下的压缩流变应力.研究AZ61镁合金在热变形时,流变应力与变形温度、应变速率之间的关系,并建立相应的流变应力模型.结果表明,AZ61镁合金在高温压缩变形时,当变形温度一定时,流变应力随应变速率的增大而增大;而当应变速率一定时,流变应力随变形温度的升高而降低.AZ61镁合金的热变形过程均表现出较明显的动态再结晶特征,其流变应力的变化规律主要受加工硬化和再结晶软化两者机制的共同作用.在热变形下,AZ61镁合金峰值流变应力可以用双曲正弦模型来进行较好的描述.  相似文献   

2.
变形镁合金高温变形流变应力分析   总被引:23,自引:0,他引:23       下载免费PDF全文
AZ31B镁合金是应用最广泛的变形镁合金,研究它在高温下的流变应力对热加工过程有很大的实际意义。采用实验法研究了AZ31B镁合金高温高应变速率压缩时流变应力,结果表明镁合金在573-723K、应变速率为0.01-5s^-1进行高温压缩的情况下,变形温度和应变速率对流变应力有显著的影响,流变应力随应变速率的升高和变形温度的降低而升高,其稳态流变应力同Zener-Hollomon参数的对数之间呈线性关系。引入Zener-Hollomon参数的指数形式正确描述AZ31B镁合金热压缩变形时流变应力同变形温度和应变速率之间的关系。  相似文献   

3.
AZ31镁合金变形行为的热/力模拟   总被引:3,自引:1,他引:3  
采用GLEEBLE-1500热/力模拟机在变形温度为423~723K,应变速率为0.01~10s^-1,最大变形量为60%的条件下对铸态AZ31镁合金进行热/力模拟研究,并结合热变形后显微组织,分析合金力学性能与显微组织之间的关系。研究结果表明:应变速率和变形温度是影响变形激活能的关键参数;当变形温度一定时,流变应力和应变速率之间呈线性关系,合金的变形激活能在523~573K时变化不大,而在大于573K时增大较快,可用包含Arrheniues项的参数Z描述AZ31镁合金热压缩变形的流变应力行为。  相似文献   

4.
变形参数对AZ31镁合金变形抗力的影响   总被引:1,自引:1,他引:1  
利用Gleeble-1500热模拟试验机对AZ31镁合金在变形温度为250~400℃、变形速率为0.5~3.0s-1下进行热变形模拟实验,得到了AZ31镁合金真实应力-真实应变曲线,并通过光学显微镜观察了试样在变形中的微观组织.结果表明,动态再结晶是该实验条件下晶粒细化的主要机制,变形参数影响了再结晶的程度.  相似文献   

5.
在Gleeble-1500热模拟试验机上对Al-0.80Mg-0.63Si-0.61Cu合金进行等温热压缩试验,研究其在高温压缩变形中的流变应力行为.研究结果表明:流变应力随应变速率的增大而增大,随变形温度的升高而降低,在高应变速率和较低温度条件下,应力出现锯齿波动,呈不连续再结晶特征;该铝合金热压缩变形的流变应力行为可用包含Arrhenius项的Zener-Hollomon参数来描述,其变形激活能为176.54 kJ/mol.  相似文献   

6.
采用DEFORM - 3D软件,以4种速度对AZ31镁合金棒料的挤压过程进行三维有限元数值模拟,分析金属流动规律及挤压速度对温度场、等效应力场及应变场分布的影响.结果显示:当挤压速度v从1.5 mm/s增至4.5 mm/s时,棒料在稳定挤压状态下的热流通量从-2.7×104(W·m-2)增为1.15×105(W·m-2...  相似文献   

7.
变形条件对AZ31镁合金冷压缩过程中孪生的影响   总被引:1,自引:0,他引:1  
在新三思拉伸试验机CMT-5150上对均匀态AZ31镁合金进行室温压缩试验,研究了在变形量分别为5%、7.5%、10%、12.5%、15%以及变形速率分别为0.5、1、2、4mm/min时压缩变形组织中孪晶的形态与分布。结果表明:在压缩变形初期,只有少量晶粒内出现孪晶,孪晶较宽;而在压缩变形末期,孪晶几乎分布于所有晶粒中,且出现了细而长的孪晶。孪晶分数随变形程度的增大而上升。随着变形速率的增大,孪晶形态变细,且其密度增大,试样的屈服强度和抗压强度都升高。  相似文献   

8.
为了确定AZ31镁合金轧制工艺参数,利用Gleeble--3500热模拟试验机进行热压缩试验以测试其热变形行为,并根据动态材料模型理论得到其热加工图.当变形温度为380~400℃、应变速率为3~12 s-1时,功率耗散效率大于30%,属于动态再结晶峰区;在该区域进行异步轧制变形退火处理后得到平均晶粒直径为2.3μm的细晶组织,抗拉强度为322.7MPa,延伸率为19.6%.当应变速率大于15 s-1时,属于流变失稳区,250~300℃低温加工时合金的塑性显著降低,350~400℃高温加工时合金出现混晶组织.  相似文献   

9.
挤压变形对AZ31镁合金组织和性能的影响   总被引:35,自引:0,他引:35  
采用500T挤压机试验研究了挤压变形对AZ31镁合金组织和性能的影响。结果表明,挤压变形AZ31镁合金组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征。挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能。随挤压比的增大,晶粒细化程度增加,晶粒尺寸由铸态的d400μm减小到挤压态的d12μm(min);强度、硬度随挤压比的增大而增大,延伸率在挤压比大于16时呈单调减的趋势。  相似文献   

10.
粉末冶金AZ91镁合金的高温压缩流变应力行为   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟机,对快速凝固粉末冶金AZ91镁合金在应变速率为0.001~1 s-1,变形温度为250~400 ℃条件下的流变应力行为进行了研究.结果表明:快速凝固粉末冶金AZ91镁合金热压缩变形的流变应力受到变形温度和应变速率的强烈影响.流变应力主要呈现幂指数关系.其热变形应力指数n为8.7,热变形激活能Q为132.6 kJ/mol.  相似文献   

11.
Mg-Al-Zn系合金高温压缩流变应力研究   总被引:1,自引:0,他引:1  
在Gleeble-1500热模拟机上对Mg-Al-Zn系合金(AZ31和AZ80)的高温压缩流变应力行为进行研究.结果表明:材料真应力-应变曲线呈现动态再结晶特征.合金元素含量差异引起材料高温变形行为不同.AZ31合金流变应力行为受变形温度影响:变形温度低于350℃时呈幂指数关系;高于350℃时呈指数关系,应力指数n为7,热变形激活能Q为112 kJ/mol.AZ80合金高温流变应力符合幂指数关系,应力指数n为6,热变形激活能Q为220 kJ/mol.  相似文献   

12.
AZ31镁合金的研究进展   总被引:4,自引:1,他引:4  
综述了AZ31镁合金基本特征,讨论了主要合金元素对AZ31镁合金组织和性能的影响、AZ31镁合金的力学性能以及AZ31镁合金的晶粒细化、超塑性的研究现状,对AZ31镁合金的发展前景进行分析,指出应加强其成形技术、镁基复合材料和AZ31镁合金基础理论的研究.  相似文献   

13.
采用Gleeble-1500热模拟试验机,在变形温度为380℃~500℃和应变速率为0.001~10 s-1的条件下对含钪铝锂合金的热变形行为进行了研究。结果表明:含钪铝锂合金流变应力随变形温度升高和应变速率的降低而减小。以实验为基础,利用作图法和线性回归方法求解得出各参数数值和流变峰值应力方程,利用该方程预测流变应力值与实验结果吻合较好;该合金在高温压缩变形中,在变形温度大于470℃和应变速率小于0.1 s-1时,合金发生了动态再结晶,且温度越高、应变速率越低,该合金越易发生动态再结晶。在380℃~470℃,0.1~10 s-1条件下,对该合金进行热变形加工较为适宜。  相似文献   

14.
AZ31镁合金薄板热拉深工艺研究   总被引:4,自引:1,他引:4  
主要研究了镁合金热拉深工艺过程中,各工艺参数包括拉深温度、压边间隙、润滑条件、拉深速度等对镁合金拉深成形性能的影响.结果表明:在200-275℃间,板厚为1mm的AZ31镁合金薄板具有较佳的热拉深成形性能,可得到最大极限拉深比为2.14杯形拉深件,极限拉深比的大小随上述工艺参数的变化而变化.  相似文献   

15.
采用Gleeble-1500D热模拟机进行高温等温压缩试验,研究了半连续铸造Al-15Si铝合金在变形温度为300~500℃,应变速率为0.001~5 s-1条件下的流变应力行为.结果表明,在试验温度范围内,此合金的流变应力随变形温度的升高,应变速率的降低而降低,说明该合金属于正应变速率敏感性材料;可采用Zener-Hollomon参数双曲正弦形式来描述Al-15Si合金高温塑性变形时的流变应力行为;σ解析表达式中材料常数A,α,n值分别为2.07×1012s-1,0.026 MPa-1,4.61,Al-15Si合金的平均热变形激活能Q为180.96 kJ/mol.  相似文献   

16.
研究了添加稀土元素Gd(0~3.0%)对AZ镁合金压铸件力学性能的影响,试验结果表明:随稀土Gd加入量的增加,AZ镁合金抗拉强度和屈服强度先有提高,过量的稀土Gd反而使AZ铁合金抗拉强度和屈服强度下降.稀土Gd加入量为1.5%时,稀土对AZ镁合金的力学性能强化效果最好,在室温及150 ℃温度条件下AZ-Gd镁合金综合性...  相似文献   

17.
利用MMS-300热模拟试验机,对20Mn2SiV非调质钢在变形温度为900~1 100℃及应变速率为0.01~10s-1条件下的流变应力进行了研究,讨论了Z参数与动态再结晶之间的关系,并建立了该钢的热变形流变应力模型.结果表明:采用Z参数可以判断动态再结晶发生与否,当lnZ≤32.76时,20Mn2SiV非调质钢发生动态再结晶;根据动态再结晶发生与否以及应变是否达到动态再结晶临界应变值,分别建立了不同情况下的流变应力模型,模型拟合效果良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号