首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
该文采用数值模拟方法,对不同叶尖处理构型的涡轮转子流场进行数值计算,获得了平顶叶尖(模型A)、带有2 mm叶尖小翼(模型B)、3 mm叶尖小翼(模型C)的涡轮转子的间隙流动特性,以及对涡轮转子效率的影响.计算结果表明:模型B的转子性能最好,其次为模型A,最差为模型C.分析间隙涡流动特性后发现,模型C的间隙涡沿叶高方向分布区域较大,强度较强,其间隙涡区域的轴向速度最小.其次为模型A,而模型B的间隙涡强度较弱,其间隙损失最小.  相似文献   

2.
以GE-E3型燃气涡轮发动机第1级高压涡轮转子为对象,通过改变进口段长度、机匣的壁面条件以及叶顶间隙的高度,调节二次流与泄漏流之间的强弱关系,分析了机匣附面层对叶顶区域气流流动和叶顶壁面换热特性的影响,并研究了叶顶边缘的倒圆处理对叶顶气流流动和壁面换热的影响.结果表明:泄漏流与二次流的相互作用,导致叶顶头部吸力面侧产生了高换热系数区域;减少二次流或增加泄漏流,均可使得叶顶头部吸力面侧的高换热系数区域减小,压力面侧的高换热系数区域增大.  相似文献   

3.
针对一种高负荷涡轮叶栅,利用低速矩形叶栅风洞实验研究叶顶间隙泄漏流动.研究了不同叶顶间隙和不同来流冲角情况下,涡轮叶栅的流场结构和气动性能.研究工况包括无间隙,0.5%、1.0%、1.5%叶高间隙和±10°、±5°、0°冲角.通过五孔探针获得矩形叶栅出口截面上总压、气流角以及速度分布;通过叶片表面开设的静压孔,获得叶片中部以及靠近叶顶截面的叶片表面静压分布.实验结果表明:叶顶间隙的存在增强了叶栅顶部的二次流动,恶化了上半叶展的流动状况,涡系结构发生了改变.随着叶顶间隙的增大,叶栅总压损失增加,气流偏转不足/过偏现象加剧;随着冲角的增大叶栅总压损失增加.  相似文献   

4.
叶顶间隙对涡轮非定常气动性能的影响   总被引:1,自引:1,他引:0  
为了分析动静干涉条件下叶顶泄漏流动对涡轮气动性能的影响,对某高负荷低压涡轮级进行了不同动叶叶顶间隙下的定常和非定常数流动的值模拟研究。结果表明:叶顶泄漏流动对上游静叶和动叶中、下部区域影响极小,影响范围主要体现在叶顶区域;随着叶顶间隙增加,动叶能量损失增加,且非定常条件下的损失增加比定常条件下大;叶顶泄漏流动对叶顶通道涡的发展和生成具有抑制效果;动静干涉效应对于泄漏涡的生成、发展、运行轨迹以及范围都有影响,且随着叶顶间隙的增加这种影响效果逐渐变得明显。  相似文献   

5.
Van Zante等首次提出了诱导涡的概念,在研究诱导涡与压气机叶尖流场的关系之前需要回答"诱导涡是否存在"这一问题。为此以跨音转子NASA Rotor 35为研究对象,采用四种不同的网格配置在80%设计转速下进行单通道数值模拟。数值计算均捕捉到了流场的主要特征,与实验结果符合较好;但没有出现所谓的诱导涡,因此对叶尖区流场的关注焦点仍然可以集中在叶顶间隙泄漏流本身。尽管如此,近机匣壁网格不断加密还是会对泄漏流的轨迹产生影响;因此Van Zante等提出的用来评估壁面剪切层强弱的参数VD依旧具有参考价值,只是针对其物理意义的解释需要重新阐述。  相似文献   

6.
针对SNECMA公司的跨声速实验涡轮装置,建立了单流道无冠叶栅三维CFD计算模型,通过求解定常RANS方程,研究了4种叶顶区域结构(平板叶顶-标准机匣、凹槽叶顶-标准机匣、平板叶顶-台阶机匣和凹槽叶顶-台阶机匣)下,叶顶泄漏流及其与主流的掺混效应对涡轮气动性能和叶顶间隙激振力的影响。结果表明:叶顶间隙较大时,凹槽叶顶-标准机匣结构的等熵效率最大,采用台阶机匣结构会使等熵效率下降;叶片切向力随叶顶间隙的增加先增大后减小,其中平板叶顶-标准机匣结构的叶片切向力最大且变化相对平稳;叶顶泄漏流对99%叶高、约67%轴向弦长处吸力面的静压分布有显著影响,叶顶间隙增加会使该区域静压下降,导致叶片切向力增大;平板叶顶-标准机匣结构的穿越间隙较大,力敏感度系数较小,促进转子稳定运动的叶顶间隙区间较大,有利于转子的稳定运行。文中还分析了叶顶间隙激振力的产生机理及其特性,可为优化叶顶结构设计和减小叶顶间隙激振提供理论依据。  相似文献   

7.
叶顶凹槽对燃气透平动叶气动性能及叶顶传热的影响   总被引:5,自引:0,他引:5  
应用数值方法研究了燃气透平动叶项部凹槽对动叶气动性能及叶顶传热的影响.采用商用计算流体力学软件CFX5.7求解稳态可压时均N-S方程组,湍流模型采用标准k-ù叫湍流模型,总体求解精度为二阶.计算叶型为一个典型现代燃气透平动叶片,叶顶凹槽深度取3%叶高,考虑了5种不同叶顶间隙的影响.结果表明:在凹槽内存在复杂的流动结构,相对平叶顶动叶,凹槽能够显著降低叶项的泄漏流量,减小泄漏损失,尤其在大间隙时更为明显;在小间隙时采用凹槽叶顶可以降低叶顶热负荷,而在大间隙时,凹槽叶顶的热负荷反而高于平叶顶的热负荷.  相似文献   

8.
带叶顶间隙轴流转子三维流动的数值模拟   总被引:8,自引:2,他引:8  
由于叶顶间隙的存在,使得叶片顶部的流动呈现复杂的三维流动。转子相对机匣的运动使得很难对其内部流场进行精确测量。文中采用CFX—Tascflow软件平台,对带叶顶间隙的轴流转子进行三维粘性流场的数值计算。数值计算的结果与实验测量的性能曲线较为吻合。基于数值计算,给出了叶顶泄漏流动的空阎三维结构,分析了叶顶泄漏流卷曲形成叶顶泄漏涡的过程,揭示了轴流转子叶顶泄漏流动基本特点,有助于改进和提高叶轮机械的设计水平。  相似文献   

9.
针对一种高负荷涡轮叶栅,利用低速矩形叶栅风洞实验研究叶顶间隙泄漏流动。研究了不同叶顶间隙和不同来流冲角情况下,涡轮叶栅的流场结构和气动性能。研究工况包括无间隙, 0.5%、1.0%、1.5%叶高间隙和±10°、±5°、0°冲角。通过五孔探针获得矩形叶栅出口截面上总压、气流角以及速度分布;通过叶片表面开设的静压孔,获得叶片中部以及靠近叶顶截面的叶片表面静压分布。实验结果表明:叶顶间隙的存在增强了叶栅顶部的二次流动,恶化了上半叶展的流动状况,涡系结构发生了改变。随着叶顶间隙的增大,叶栅总压损失增加,气流偏转不足/过偏现象加剧;随着冲角的增大叶栅总压损失增加。  相似文献   

10.
高压涡轮叶尖压力侧开槽对气动换热特性的影响   总被引:1,自引:0,他引:1  
带凹槽涡轮叶尖相比平叶尖会有更低的气动损失,然而在腔底的前半部分区域存在着高换热系数区。为了解决这一问题,通过研究凹槽叶尖压力侧设计槽结构对涡轮气热性能的影响,结合实验和数值模拟结果,结果表明具有压力侧槽结构的凹槽叶尖相比于没有槽结构的凹槽叶尖,高换热区面积减小,气动效率提升。同时,研究不同大小的槽对气热性能影响,结果表明通过槽进入腔内的气流量会大幅影响叶顶间隙和腔内的流场,叶尖区域换热及气动性能随着槽的大小的改变而不同。  相似文献   

11.
凹槽状小翼对涡轮动叶叶顶气动和传热性能的影响   总被引:1,自引:0,他引:1  
针对叶顶间隙的高速泄漏流及复杂的流动问题,采用数值求解三维RANS方程和k-ω湍流模型方法,研究了凹槽状小翼结构对涡轮级动叶叶顶传热特性和气动性能的影响。数值获得的叶顶表面传热系数分布和实验数据吻合良好,验证了数值方法的可靠性。对比分析了叶顶压力侧、叶顶吸力侧和叶顶两侧凹槽状小翼结构与无小翼凹槽状叶顶的气动传热性能,研究结果表明,相比于无小翼凹槽状叶顶结构:叶顶压力侧、吸力侧和两侧凹槽状小翼结构的叶顶表面平均传热系数分别降低了12.2%、17.1%和19.8%,叶顶两侧凹槽状小翼结构最大程度降低了凹槽状叶顶间隙的泄漏流量,减弱了压力侧角涡和刮削涡,进而降低了凹槽状叶顶的传热系数;压力侧、吸力侧和两侧凹槽状小翼结构的动叶总压损失系数分别增加了8.5%、降低了8.5%和降低了2.5%。吸力侧凹槽状小翼结构能有效降低凹槽状叶顶的传热系数,并且减少气动损失,具有最佳的气热性能。  相似文献   

12.
为了深入研究压气机抽取的脉动冷气影响燃气涡轮动叶凹槽状叶顶的流动与冷却特性,采用数值求解三维非稳态雷诺时均N-S方程和标准k-ω湍流模型的方法,研究了考虑气膜冷却脉动特性的涡轮动叶凹槽状叶顶的气动和冷却性能。采用正弦函数描述动叶凹槽状叶顶中弧线等间距布置气膜冷却孔的冷气脉动特性,对比研究了3种脉动振幅和5种脉动频率的动叶凹槽状叶顶气膜冷却有效度和总压损失系数。研究结果表明:在一个脉动周期内,不同瞬时冷气的穿透能力和附着能力差异显著。气膜冷却冷气吹风比小幅值脉动时,脉动频率的提高改变了叶顶气膜冷却有效度变化曲线的相位,但对整体的冷却效果基本没有影响;冷气吹风比大幅值脉动时,脉动频率的增大略微提高了叶顶冷却性能,并且当脉动频率增大至最大值2 000 Hz时,受到延迟反馈效应的影响,脉动周期内气膜冷却有效度的最低值相比250 Hz时提高约50%。高温主流在冷气吹风比大幅值脉动时周期性入侵冷气管路,对叶顶中间弦长和尾缘处的气膜孔结构造成破环。气膜冷却冷气吹风比低频脉动时,动叶平均总压损失系数以正弦函数规律变化,不同瞬时的总压损失系数差异随冷气吹风比脉动幅值的增大而扩大,同时当脉动频率增加时,不...  相似文献   

13.
为进一步提高叶顶气膜冷却效率,降低叶顶泄漏流量,采用CFX软件数值求解三维RANS方程及标准k-ω湍流模型,研究了应用椭圆冷却孔及径向偏转角后的动叶凹槽叶顶流动与换热特性。以GE-E3第一级动叶为研究对象,将叶片中弧线切线作为椭圆长轴开孔方向,偏转角分为向压力面侧的正向倾斜以及向吸力面侧的反向倾斜,共分析了8种结构在3种吹风比下的数值模拟结果。研究结果表明:无偏角椭圆孔在低吹风比下获得的平均气膜冷却效率比圆孔高1倍以上,高吹风比下椭圆孔冷却效果受限于出流区域收缩有所衰退,正偏角椭圆孔在全吹风比下冷却效果均优于无偏角圆孔;正偏角结构局部冷却效果较好,但集中冷却在压力面侧区域,负偏角在中高吹风比下有效扩大了冷却范围,但在低吹风比下的冷却效果较差;正偏角出流指向泄漏流入口,增强了气膜冷却阻塞作用,减小了泄漏流量,泄漏流相对减少率最高达到了11.4%;负偏角由于大幅度的流动偏转,制造了凹槽内涡流,引入了一部分叶顶外主流,在大偏角结构下的泄漏流相对增长了16.6%。  相似文献   

14.
应用PIV技术测量了一开式前缘弯掠(扭)斜流转子的叶尖脱落涡的结构及其发展演化趋势,测量结果表明,叶尖脱落涡产生于叶片顶部区域,沿着一条与转子旋转方向相反的斜线向下游发展.叶尖脱落涡的强度随叶轮转速的提高而增强,随背压的提高而减弱,当背压增加到一定程度时,叶尖脱落涡消失.实验结果为前缘弯掠(扭)斜流转子在大型中央空调室外机上的应用和优化设计及其降噪提供重要的内流实验数据.  相似文献   

15.
应用数值方法研究了燃气透平动叶顶部凹槽对动叶气动性能及叶顶传热的影响,计算求解稳态可压时均N—S方程,湍流模型采用标准k-∞湍流模型,总体求解精度为二阶.计算叶型为一个典型现代燃气轮机动叶片,叶顶凹槽深度取3%相对叶高,考虑了5种不同叶顶间隙的影响.结果显示:在凹槽内存在复杂的流动结构,相对平顶部动叶,凹槽能够显著降低叶顶泄漏流量,减小泄漏损失,尤其在大间隙时更为明显;在小间隙时采用凹槽状叶顶可以降低叶顶热负荷,而在大间隙时凹槽状叶顶的热负荷反而高于平顶的热负荷.  相似文献   

16.
17.
叶尖间隙对民用大涵道比跨音速压气机性能的影响   总被引:1,自引:0,他引:1  
以某民用大涵道比涡扇发动机高压压气机进口级为研究对象,数值研究了叶尖间隙对进口级高负荷跨音速转子叶片气动性能的影响。数值结果表明:随着叶尖间隙值增加,流量-压比与流量-效率特性线向左下方偏移,最大流量、最高压比、峰值效率逐渐降低;存在间隙对该跨音转子性能影响不敏感的范围值0mm~0.3mm;当间隙值大于0.3mm,最大流量的减小与间隙的增大呈现出近似的线性关系,最高压比和峰值效率急剧下降;间隙从0.3mm增加至1.0mm,转子总压损失增大了41%;叶尖泄漏流与通道激波相互作用,泄漏流穿过激波后在叶片压力面侧形成较大的高熵值损失区域,当叶尖间隙增大到1.0mm,泄漏流平行额线方向流动,使得贴近前缘的激波变得不明显;叶尖泄漏流对叶片通道主流的影响集中在叶高80%以上区域。  相似文献   

18.
针对超临界二氧化碳(SCO2)向心涡轮轮背空腔泄漏流,采用典型的迷宫密封,对设计参数进行参数化研究与流场分析,并计算轴向力.首先建立迷宫密封泄漏流动CFD模型,运用NUMECA软件对迷宫密封的可靠性进行验证,进而从气动参数和结构参数两方面对SCO2向心涡轮轮背泄漏特性进行研究.结果表明,涡轮泄漏量和轴向力随密封出口压力的升高而减少,在一定间隙范围内线性增大,当密封齿高较小时,泄漏量和轴向力随齿高的增加而减小,当密封齿高超过6.3 mm时,泄漏量和轴向力不再随之变化;在密封轴向长度给定的情况下,齿数为6时能实现最佳的密封效果;通过改变密封齿的形状,得到一种密封性较好的等腰梯形齿.  相似文献   

19.
利用流体计算软件,采用Realizable [WTBX]k[WTBZ]-ε湍流模型和PDF输运燃烧模型,分别对无凹槽和5种不同径向凹槽叶片结构的超紧凑型涡轮级间燃烧室(ITB)三维两相燃烧流场进行了数值模拟,并比较分析了不同ITB模型的速度场、温度场和总体性能参数。计算结果表明不同叶片径向凹槽结构内部的速度场、温度场差异较大,进而影响到富油燃烧产物在主流下游通道进行二次贫油燃烧的完全程度和ITB出口截面温度分布。改进叶片径向凹槽结构可以使级间燃烧室总压损失更小、燃烧效率和温升更高、出口污染物浓度更低。  相似文献   

20.
低雷诺数对透平叶片间隙泄漏流动影响的研究   总被引:2,自引:0,他引:2  
采用预处理方法数值研究了低雷诺数时某小型燃气轮机透平叶栅间隙泄漏流动和气动性能.对比分析了雷诺数从4.40×104到2.55×105变化时,带间隙和不带间隙时流场的变化特性,研究了雷诺数对间隙泄漏流的影响,并和相应的实验结果及Denton预测值进行了对比.结果表明:对于间隙存在造成的流动损失,数值模拟结果与实验结果及Denton的预测值都十分接近,基本上不随着雷诺数的变化而变化;但是,随着雷诺数的减小,通道涡增强;间隙泄漏涡在和通道涡的相互作用中,强度减弱,在叶栅出口处的位置更加靠近中叶展;出口处的总压损失和气流角的分布也由于间隙泄漏涡强度和位置的变化而发生改变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号