共查询到19条相似文献,搜索用时 73 毫秒
1.
应用核函数Ω(x,z)的性质,证明了由变量核分数次极大算子ΜΩ,α与Lipschitz函数b生成的交换子ΜΩ,α,b是变指标Morrey空间M(p(·),u)(Rn)上的有界算子,从而推广了以往非变量核的相关结果. 相似文献
2.
利用函数分层分解方法和变指标Morrey空间的性质,得到了分数次极大算子在变指标Morrey空间上的弱型估计,同时也证明了相应的交换子在变指标Morrey空间上是弱有界的. 相似文献
3.
设μΩ,α为分数型Marcinkiewicz算子,[b,μΩ,α]是由μΩ,α和有界平均振动(BMO)函数b(x)生成的交换子。利用Sharp极大函数估计以及空间分解理论,证明了μΩ,α和[b,μΩ,α]在加权Morrey空间上的有界性质。此外,考虑了μΩ,α在加权Morrey空间上的弱型估计。 相似文献
4.
主要讨论了齐型空间上的Morrey空间极大算子的有界性,得到了极大算子Mq与M的一个等价关系,即Mq是Lp,(Ф)(X,μ)到Lp,(Ф)(X ,β)有界的等价M的有界性. 相似文献
5.
6.
建立了满足一定尺寸条件的某些次线性算子在广义Morrey空间L^p,ψ(R^n)(n≥2)上的有界性,从而解决了某些带有Taylor级数余项型的多线性算子在L^p.ψ(R^n)上的连续性问题. 相似文献
7.
李莉 《安徽工程科技学院学报:自然科学版》2006,21(3):67-70
首先在齐型空间X上引进了一类Morrey型函数空间LλΦ (X,μ)={f∈Lloc(X,μ):(E)k>0使得supr>0,x∈X∫B(x,r)Φ(f(z)·Φ-1(1/λ(r))/k)dμ<∞},然后讨论极大算子在这种函数空间上的有界性问题,得到其有界的充分必要条件,推广了有关文献中的结果. 相似文献
8.
辛银萍 《吉林大学学报(理学版)》2021,58(4):791-797
用函数分层分解和权不等式等工具, 借助Hardy算子在变指标Lebesgue空间的性质与有界平均振荡函数空间(BMO)函数的性质, 给出变指标分数次Hardy算子与BMO函数生成的高阶交换子在变指数Herz Morrey空间上的加权有界性. 相似文献
9.
通过变阶的分数次积分算子在变指标函数空间上的相关性质,研究了变阶的多线性分数次积分算子在变指标乘积Morrey空间上的有界性,证明了变阶的多线性分数次积分算子从变指标Morrey空间到变指标乘积Morrey空间是有界的. 相似文献
10.
辛银萍 《吉林大学学报(理学版)》2020,58(4):791-797
用函数分层分解和权不等式等工具, 借助Hardy算子在变指标Lebesgue空间的性质与有界平均振荡函数空间(BMO)函数的性质, 给出变指标分数次Hardy算子与BMO函数生成的高阶交换子在变指数Herz Morrey空间上的加权有界性. 相似文献
11.
主要利用给出的次线性算子在变指数Lp(·)(Rn)空间上的有界性,证明了其在变指数Herz-Morrey空间MK·α(·),λq,p(·)(Rn)上的有界性. 相似文献
12.
朱诗红 《安徽师范大学学报(自然科学版)》2021,44(1):10-16
首先借助sharp极大函数证明参数型Marcinkiewicz积分在含变指数Lebesgue空间的有界性.其次,我们进一步证明了此算子在含两个可变指数的齐次Herz和Herz-Morrey空间的连续性. 相似文献
13.
本文首次引入了加权λ-中心Morrey空间以及加权λ-中心有界平均振动空间,得到了具有粗糙核的高维Hardy算子交换子在此类空间中有界性.我们的结果推广了Fu,Lu和Zhao的结论. 相似文献
14.
用函数分解及几何双倍条件和上双倍条件方法, 得到了Calderón-Zygmund算子及其与RBMO(μ)函数生成的交换子在非齐度量测度空间上Morrey空间中的有界性; 并且当p=n/β时, 证明了Calderón-Zygmund算子与Lipschitz函数生成的交换子是从Morrey空间到RBMO空间有界的. 相似文献
15.
主要研究多线性分数次积分算子Iα(m)在变指数Herz-Morrey空间的乘积空间MKσ1,λ1q1,p1(·)(Rn)×MKσ2,λ2q2,p2(·)(Rn)×…×MKσm,λmqm,pm(·)(Rn)上的有界性.即经典分数次积分算子在Herz-Morrey空间上有界性的多线性形式的推广.主要使用特征函数将分数次积分算子分解,逐个进行估计,最终得到Iα(m)在变指数Herz-Morrey空间的乘积空间的有界性. 相似文献
16.
本文主要研究了一类关于变指标β(x)的分数次Hardy算子H_(β(x))和H_(β(x))在变指数Herz-Morrey空间的有界性. 相似文献
17.
借助Lp空间上的估计,利用Ap权不等式和函数分解方法,给出多线性奇异积分和有界平均振荡(BMO)函数交换子的振荡及变分算子在加权Morrey空间上的有界性. 相似文献
18.
主要研究分数次积分算子Il与Besov函数生成的交换子在变指数Lebesgue空间Lp(·)(Rn)中的有界性,以及分数次积分算子Il与Lipschitz函数生成的交换子在变指数Herz-Morrey空间MKα,λq,p(·)(Rn)中的有界性. 相似文献
19.