共查询到20条相似文献,搜索用时 0 毫秒
1.
关于非奇M-矩阵A与B的Fan积AB,利用Gerschgorin圆盘定理和Brauer定理,给出AB的最小特征值下界的新估计式。新估计式只与矩阵的元素有关。数值算例表明新估计式改进了现有的结果,易于计算。 相似文献
2.
利用Cauchy-Schwitz不等式给出非奇异M-矩阵A和B的Fan积AB的最小特征值下界的新估计式,并与其他文献中的估计式进行比较.数值算例表明,新估计式在一定条件下改进了Johnson和Horn给出的经典估计式,同时也优于其他已有的几个估计式,比现有的估计式更接近真值. 相似文献
3.
利用Cauchy-Schwitz不等式给出两个非奇异M-矩阵A和B的Fan积的最小特征值下界的一个新估计式。通过数值算例验证,所得的估计结果比现有结果更为精确。 相似文献
4.
5.
陈付彬 《西南师范大学学报(自然科学版)》2020,(8):1-5
非奇异M-矩阵特征值的估计是矩阵理论研究的重要问题.利用Brauer定理和Gerschgorin定理给出了非奇异M-矩阵A和B的Fan积的最小特征值下界的新不等式.新结果只与矩阵的元素有关,易于计算.数值算例表明新估计式在一定条件下改进了已有的结果. 相似文献
6.
本文利用Brauer卵形定理和Cauchy-Schwitz不等式给出了两个非奇异M-矩阵A 和B 的Fan积的最小特征值下界的新估计式 * 此下界估计式比现有几个估计式更为精确。通过数值算例计算得τ(AB)≥2.7834,与其他文献中的结果加以比较,表明所得的新估计结果在一定条件下改进了Horn和Johnson给出的经典结果,同时也改进了其他已有的几个结果,比其他结果接近τ(AB)的真值。(注:*处为公式)
相似文献
相似文献
7.
周平 《文山师范高等专科学校学报》2013,(6):34-38
M-矩阵的Hadamard积是矩阵理论及其应用的重要问题之一,文章给出了非奇异M-矩阵B与非奇异M-矩阵A的逆矩阵的Hadamard积的最小特征值下界的一个新估计式;同时得到了M-矩阵与其逆矩阵的Hadamard积的最小特征值的一个新估计式;算例表明,文中所得估计式在某些情况下比现有估计式的估计结果更精确,且它们仅与矩阵A和B的元素有关,计算简单。 相似文献
8.
高美平 《西南师范大学学报(自然科学版)》2014,39(6)
对M-矩阵A与其逆矩阵A-1的Hadamard积的最小特征值τ(A°A-1)的下界进行了研究,给出了其下界的新估计式,而且证明了这些估计式是现有一些结果的推广.最后用数值算例验证了所得的结果改进了现有的某些结果. 相似文献
9.
关于M-矩阵与其逆矩阵的Hadamard积A。A-1,给出A。A-1的最小特征值下界的一些新的估计式,新下界估计式只依赖于矩阵的元素,易于计算。算例表明,新估计式有效地改进了Fiedler和Markham的猜想,也改进了其它已有的结果。 相似文献
10.
《南阳理工学院学报》2016,(6):123-128
根据两个M-矩阵的Schur积的性质,结合非奇异M-矩阵的特点,对B与A-1的Schur积的最小特征值下界做了进一步研究,给出τ(B°A-1)的新估计式,同时得到了当A-1是双随机矩阵时,τ(B°A-1)的一个新估计式;用理论证明这些估计式改进了现有的结果,且这些估计式仅用到矩阵A和B的元素,计算简单易行;并用算例验证了这些新下界确实提高了现有估计式的估计精确度. 相似文献
11.
钟琴 《安徽大学学报(自然科学版)》2019,43(3)
非奇异M-矩阵最小特征值的估计是矩阵分析理论研究中的重要问题.利用H?lder不等式,给出非奇异M-矩阵最小特征值的下界估计式.新估计式只与M-矩阵的元素有关,易于计算.数值例子说明新估计式改进了现有的相关结果. 相似文献
12.
关于M-矩阵A与M-矩阵B的逆矩阵的Hadamard积最小特征值的下界问题,近年来受到许多学者的关注与研究。首先介绍相关背景,进而利用Cauchy-Schwitz不等式(ξ,η)2≤(ξ,ξ)(η,η),矩阵的Jacobi迭代矩阵和矩阵特征值与特征向量的关系研究了非奇异M-矩阵A和非奇异M-矩阵B的逆矩阵的Hadamard积A·B-1最小特征值下界问题,得到如下一组新的下界估计式。最后通过算例分析说明,新的下界估计式在一定条件下改进了其他现有结果。 相似文献
13.
14.
刘新;杨晓英 《甘肃教育学院学报(自然科学版)》2013,(5):4-6,17
对于非奇异M-矩阵A与B,利用Brauer定理和逆矩阵元素的范围,给出B·A-1的最小特征值下界的新估计式.理论分析和数值算例结果说明新估计式改进了现有的结果. 相似文献
15.
M-矩阵与M-矩阵的逆的Hadamard积的最小特征值下界的估计 总被引:1,自引:1,他引:1
给出了非奇异M-矩阵A的逆矩阵与非奇异M-矩阵B的Hadamard积的最小特征值下界的估计式,该估计式只依赖于矩阵A与B的元素,易于计算,算例表明,所得估计式在一定条件下比现有估计式更为精确。 相似文献
16.
对于非奇异M-矩阵A与B,首先给出A的逆矩阵元素的范围,进而利用Brauer定理,得到BA-1最小特征值下界的新估计式。理论分析和数值算例说明新估计式改进了现有的结果。 相似文献
17.
孙德淑 《西南师范大学学报(自然科学版)》2016,41(2)
给出了非负矩阵A和B的Hadamard积的谱半径上界,以及M-矩阵A和B的Fan积的最小特征值下界的新估计式.这些估计式都只依赖于矩阵的元素,易于计算.数值例子表明,新估计式在一定条件下改进了现有的一些结果. 相似文献
18.
文章给出了非奇异M-矩阵A与非奇异M-矩阵B的逆矩阵的Hadamard积的最小特征值下界的估计式.示例表明,文中所得估计式在某些情况下可得到比现有估计式更为精确的结果. 相似文献
19.
高美平 《四川师范大学学报(自然科学版)》2014,(1):90-97
M-矩阵是一类有重要应用背景的特殊矩阵,生物学、物理学和社会科学等学科中的许多问题都与M-矩阵有密切的联系.M-矩阵与其逆矩阵的Hadamard积的最小特征值的估计是M-矩阵理论及其应用中重要的问题之一,一直受到专家学者广泛的关注和研究.给出了M-矩阵与其逆矩阵的Hadamard积的最小特征值的2个新的估计式,并从理论上证明了新的估计式比现有的一些估计式更精确,算例也表明所得的估计式的确比现有估计式的估计结果更为精确.另外,这些估计式只用到矩阵的元素,因而计算简单易行. 相似文献
20.
分别给出了非奇异M-矩阵的逆矩阵和非奇异M-矩阵的Hadamard积与非奇异M-矩阵Fan积的最小特征值下界新的估计式;同时给出了非负矩阵Hadamard积的谱半径上界新的估计式;这些估计式都只依赖于矩阵的元素,易于计算.算例表明,这些估计式在一定条件下改进了现有结果. 相似文献