共查询到16条相似文献,搜索用时 78 毫秒
1.
设α为环R的自同态, 如果对任意的a,b,c∈R, 由abα(c)=0可推出acb=0, 则称R是强右α-对称环. 研究强α-对称环与对称环、 强α-可逆环、 强α-半交换环等相关环的关系及强α-对称环的扩张性质, 证明了: 1) 环R是强α-对称环当且仅当R是对称环且是α-compatible环; 2) 设R是约化环, 则R是强α-对称环当且仅当R[x;α]是强α-对称环; 3) 设α是右Ore环R的自同构, 则环R是强α-对称环当且仅当Q(R)是强α-对称环. 相似文献
2.
通过环R上矩阵环M3(R)的特殊子环S3(R)={(α(a) b c 0 β(a) d 0 0 γ(a))|a,b,c,d∈R}给出了一类半交换Armendariz环。利用Reduced环和相容自同态的性质证明了:如果R是Reduced环,α,β,γ是R的相容自同态,那么S3(R)是半交换的Armendariz环。 相似文献
3.
张万儒 《吉林大学学报(理学版)》2016,54(1):35-39
考虑四阶矩阵环M4(R)的子环S4(R)的半交换性和Armendariz性质, 证明了如果R是reduced环, α1,α2,α3,α4是R的相容自同态, 则S4(R)是半交换Armendariz环. 相似文献
4.
5.
邓清 《西华师范大学学报(哲学社会科学版)》1995,16(4):359-361
证明了如下定理:设R是半素环,U为R的1个非零左理想,若R容许1满自同态T使得T在U上是中心的,而V=U^T-1∩U∪U^T≠{0}且T在V上不是恒等映射,则R含有非零的中心理想。 相似文献
6.
本文通过引入左α-半交换环推广半交换环的概念。设α是环R的一个非零自同态,称R是一个左α-半交换环,如果对任何a,b∈R,由ab=0可以推出α(a)Rb=0。本文讨论左α-半交换环与相关环的关系,给出左α-半交换环的一些扩张性质,证明了:①环R是α-rigid环当且仅当R是约化的左α-半交换环,且α是单同态;②如果R是约化的左α-半交换环,则R[x]/〈xn〉是左珔α-半交换环,其中〈xn〉是由xn生成的理想,n为任何正整数。 相似文献
7.
带自同态的单模和半单模 总被引:2,自引:0,他引:2
刘永辉 《江西师范大学学报(自然科学版)》1990,14(3):70-73
本文研究带有一个自同态的单模、半单模,推广了著名的Schur引理。当σ是幂等自同态时,给出σ-单模、σ-半单模的构造。 相似文献
8.
杨云飞 《内蒙古师范大学学报(自然科学版)》2011,(2)
研究了代数闭域F上矩阵环Mn(F)的子环的弱半交换性,分别给出2阶和3阶矩阵环的子环是弱半交换环的充分必要条件和必要条件.证明了Mn(F)的子代数是弱半交换的当且仅当是可三角化的. 相似文献
9.
给出了π-弱半交换环的概念,说明了π-弱半交换环是弱半交换环和π-半交换环的真推广.同时给出了π-弱半交换环的一些等价刻画,得到了π-弱半交换环与其他一些环之间的关系. 相似文献
10.
郭世乐 《厦门大学学报(自然科学版)》2014,(6):765-768
引进了qnil-半交换环的概念,推广了半交换环.证明了:二级三角矩阵环(SM0T)是qnil-半交换环当且仅当环S,T都是qnil-半交换环;环R上的幂级数环R[[x]]是qnil-半交换环当且仅当R是qnil-半交换环. 相似文献
11.
12.
研究了约化环R上的n阶上三角矩阵子环An(R)(n=2k+1≥3),An(R)+RE1,k(n=2k≥4)的半交换性,在此基础上,给出了一些上三角矩阵环的极大半交换子环. 相似文献
13.
张万儒 《吉林大学学报(理学版)》2015,53(1):45-48
考虑环R上三阶矩阵环M3(R)的一类特殊子环S3(R),证明了如果R是reduced环,α,β是R的相容自同态,则S3(R)是半交换Armendariz环,并给出了Armendariz环和半交换环的例子. 相似文献
14.
闫占平 《甘肃联合大学学报(自然科学版)》2004,18(1):10-12
设R是reduced环.记Un(R)为R上的n×n上三角矩阵环.则Un(R)不是半交换环.本文证明了Un(R)的子环Rn是半交换环.作为推论,证明了R平凡扩张T(R,R)也是半交换环. 相似文献
15.
提出左(右)零因子环的概念,它们是一类没有单位元的环.一个环称为左(右)零因子环,如果对于任何a∈R,都有rR(a)≠0(lR(a)≠0).讨论了左(右)零因子环和相关环的关系,给出左零因子环的一些特征刻画. 相似文献
16.
王文康 《西北民族学院学报》2007,28(2):1-5
称环R是Armendariz环,如果(∑mi=0aixi)(∑nj=0bjxj)=0∈R[x],那么aibj=0,其中0≤i≤m,0≤j≤n.称环R是半交换环,如果由ab=0,可得aRb=0,其中a,b∈R.称环R是reduced环,如果它没有非零的幂零元.设R是reduced环,则R上的上三角矩阵环的子环Wns(R)既是Armendariz环又是半交换环. 相似文献