首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
以烟碱为唯一碳源,从湖北省襄阳市烟叶种植土壤中分离得到1株烟碱降解菌,命名为CW6,经常规的形态观察、生理生化分析以及16SrDNA序列同源性分析,初步鉴定该菌株为假单胞菌属(Pseudomonas).CW6菌株降解烟碱最适温度为30℃.当烟碱质量浓度为2.0g/L时,烟碱降解率达到88.18%.当烟碱质量浓度达到5.5g/L时,烟碱降解率达到45.83%.当烟碱质量浓度高于6.5g/L时,菌株生长和烟碱降解率均呈下降趋势,烟碱降解率低于8.53%.CW6菌株在烟碱质量浓度为2.0g/L的烟碱培养基中培养,不同时间样品紫外扫描显示:0h在259nm处有吸收波峰,A259值为0.9946,当培养时间达到48h时,259nm处烟碱特征吸收峰降低至0.1370.  相似文献   

2.
一株新耐冷菌SA-8降解有机磷农药的研究   总被引:15,自引:0,他引:15  
从东北地区受农药长期污染的土壤中通过富集培养、分离筛选到一株甲基对硫磷高效降解菌SA-8,根据生理生化特征,初步鉴定为邻单胞菌Plesiomonas sp..菌株降解甲基对硫磷的最适温度和pH分别为20℃和7.0,在此条件下培养24h,降解率达93%;当温度位于10℃时,降解率也有66.2%;而在35℃时降解率仅为27.3%.这些结果表明SA-8是一株耐冷有机磷农药降解菌.  相似文献   

3.
研究2株直链烷基苯磺酸钠(LAS)共代谢降解菌的降解动力学.分别对2株直链烷基苯磺酸钠共代谢降解菌克雷伯氏菌属(Klebsiella sp.)和肠杆菌属(Enterobacter sp.)进行研究,通过正交实验考察了其最佳降解条件,并进行降解动力学研究.当温度为30℃,p H值为7.5,装液量为50 m L时,最适合两株细菌降解LAS.其中菌株L-2在生长基质葡萄糖质量浓度为500 mg/L时,对50 mg/LLAS降解率为94.2%;菌株L-15在生长基质葡萄糖质量浓度为1 000 mg/L时,对50 mg/LLAS降解率为92.2%;当LAS质量浓度在25~100 mg/L范围内,2菌株降解反应符合一级动力学特征.本研究可为全基质生活污水处理LAS废水提供一定的理论依据.  相似文献   

4.
两株高效石油烃氧化菌的正十六烷降解特性   总被引:1,自引:0,他引:1  
研究从长庆、延长油田油泥中分离出的两株高效石油烃氧化菌PDA2(红球菌属)和PDB3(假单胞菌属)对正十六烷的降解特性和各降解特性之间进行关联分析。测定菌株在不同温度、pH、底物浓度、接种量、盐度和H2O2条件下菌株对正十六烷的降解率,并测定降解过程中表面活性剂、乳化剂、酸的产量和细胞表面疏水性变化。PDB3在30℃,pH7,初始正十六烷浓度1%,接种量5%,H2O2600 mg/L时可以降解98.5%的正十六烷,PDA2在30℃,pH7,初始十六烷浓度1%,接种量5%,H2O2400 mg/L时,可以降解89.4%的正十六烷,PDB3培养72 h产生3.8 cm的排油圈、336mg/L的酸、55%的乳化率,PDA2培养72 h产生1.5 cm的排油圈、362 mg/L的酸、35%的乳化率,PDB3和PDA2在十六烷培养液中的疏水性与在葡萄糖培养液中的疏水性没有发生明显改变。在温度为45℃,盐度为1%~3%时,两株菌对正十六烷降解率超过50%,添加适量H2O2促进菌株对正十六烷的降解;细胞产生的表面活性剂和乳化剂协同作用促进菌株对正十六烷的降解,表面活性剂的产生并没有增加菌株细胞表面的疏水性,疏水性弱(低于10%)的细胞产生的表面活性剂多。这两株自身产表面活性剂的菌株对后续石油烃降解的理论及应用研究具有重要意义。  相似文献   

5.
从印染厂污水处理站的活性污泥中分离出五株有脱色能力的菌株(T1、T2、T3、T4、T5),其中T4菌株降解能力最强.实验表明,当培养温度为34℃,pH值为7.0,投菌量10%时,脱色效果最好,脱色率可达84.5%.另外,混合菌的脱色效果要优于T4单菌株,脱色率可提高至87.6%.  相似文献   

6.
目的:研究和分析嗜碱性假单胞菌株对菲的降解.方法:采用索氏提取法,以活性炭为吸附载体,多环芳烃为惟一碳源,研究嗜碱性假单胞菌在不同的温度、pH和盐度条件下对菲降解率的影响.结果:将此菌株培养48 h后,温度为37℃时,菲的降解率可达39.8%.当pH值为7.0时,菲的降解率可达47.1%;当盐度为120 mmol/L时,菲的降解率可达28.4%.结论:嗜碱性假单胞菌对菲有较高的降解效率,pH、温度、盐度三个因素对菌株的降解率有较大影响.  相似文献   

7.
SDBS降解菌的筛选及其降解特性研究   总被引:1,自引:0,他引:1  
为筛选纯化和研究SDBS降解菌的生物学及降解特性,通过富集、分离与纯化,从长期受洗涤剂、除草剂和有机磷污染的土壤中,分离出4株能以十二烷基苯磺酸钠(SDBS)为唯一碳源的细菌,这4株菌分别为2-1,2-2,C-1和X-4.在选定的最适条件下,测定了4株菌对SDBS的降解能力.SDBS质量浓度达500 mg/L时,菌株2-1仍能很好地生长且继续进行降解,SDBS的降解率达到了94.78%;菌株2-2的降解率为91.09%.  相似文献   

8.
为探究单核细胞增多性李斯特菌(LM)不同菌株对脑微血管内皮细胞黏附,侵袭以及在细胞内增殖的差异,本实验利用LM90SB2、LM3、LM4,塞氏李斯特菌(L.seeligeri),无害李斯特菌(L.innocua)感染脑微血管内皮细胞,采用BHI平板计数,测定细菌黏附率、侵袭率及不同时间细胞内增殖情况。结果表明:LM90SB2、LM3、LM4对脑微血管内皮细胞黏附率为3.14%~7.83%,统计学分析其差异不显著;LM90SB2、LM3、LM4对人/鼠脑微血管内皮细胞侵袭率(0.036%~0.128%)均大于L.seeligeri(0.0315%、0.00148%),L.innocua不侵袭脑微血管内皮细胞。LM90SB2、LM3、LM4对人/鼠2种细胞的侵袭率存在显著差异(P0.05),临床分离株LM90SB2增殖速度、菌量及持续时间明显高于其它菌株。以上结果提示LM不同菌株的毒力不同。  相似文献   

9.
以烟碱为唯一碳源,从湖北省襄阳烟叶种植土壤中分离得到了一株烟碱降解菌,命名为DAB2,经形态观察、生理生化分析和16S rDNA序列分析,初步鉴定该菌株为中间苍白杆菌(O.intermedium).当培养基中烟碱质量浓度为1.0 g/L,DAB2菌株生长良好,烟碱降解率为88.42%;当烟碱质量浓度为3.0 g/L,降解率为52.46%;当烟碱质量浓度高于6.0 g/L时,菌株生长和烟碱降解率均呈下降趋势,烟碱降解率低于10.36%.DAB2菌株在烟碱质量浓度为1.0 g/L的烟碱培养基中培养,不同时间样品紫外扫描显示:0 h只有259nm处有吸收波峰,8 h时259nm处波峰降低,在230nm和290nm处出现了新峰,表明产生了中间产物.  相似文献   

10.
从油田产出水中筛选出一株能在高温条件下以原油为碳源的烃类降解菌D-1,通过形态、生理生化特征分析,确定该菌株为芽孢杆菌属.测定了pH、温度和盐度对降解能力的影响,确定了最佳生长条件,并用该菌株进行了物模驱油实验.实验结果表明:该菌最佳pH和温度分别为6.0和60℃;其中盐度为0.2%时,降解率达到64.3%,对盐离子具有较好的耐受性;在物理模拟驱油实验中培养10 d后可提高原油采收率5.6%.菌株D-1在微生物采油中具有很好的应用前景.  相似文献   

11.
从长期受有机磷农药污染的种植地土壤中分离到两株降解有机磷农药的细菌M1、M2.对所分离的菌株进行形态特征、生理生化特性和16S rDNA序列分析,初步鉴定M1菌株是恶臭假单胞菌(Pseudomonas putida),M2是Ludwigii肠杆菌(Enterobacter ludwigii).菌株M1、M2对甲基对硫磷、毒死蜱的耐受浓度在含有1%蔗糖的无机盐培养基中达到500 mg/L,对乐果的耐受浓度高达1 000 mg/L.在土壤模拟体系试验中,培养第32天,菌株M1、M2对土壤中甲基对硫磷的降解率分别为85%、93%;培养第48天,对土壤中毒死蜱的降解率分别为71%、81%.  相似文献   

12.
烟束曲霉HLS-6的筛选及其对Cr(Ⅵ)的吸附特性   总被引:1,自引:1,他引:0  
采用富集培养方法从某下水道污泥中筛选到一株对重金属Cr(Ⅵ)吸附效率高的菌株--烟束曲霉HLS-6,考察了pH值、温度和Cr(Ⅵ)初始质量浓度对HLS-6吸附Cr(Ⅵ)的影响.结果表明,在pH为1~2、温度为25~30℃时,吸附率高达96.7%;Cr(Ⅵ)初始质量浓度增加,吸附容量增大,但吸附率减小:当Cr(Ⅵ)初始质量浓度分别为9.42和91.7mg/L时,HLS-6在48h内对Cr(Ⅵ)的吸附率分别为100%和50.8%,吸附容量分别为4.9和23.3 mg/g;吸附菌在菌龄为3~5 d时对Cr(Ⅵ)的吸附率最大.  相似文献   

13.
采用富集培养方法从某下水道污泥中筛选到一株对重金属Cr(VI)吸附效率高的菌株———烟束曲霉HLS-6,考察了pH值、温度和Cr(VI)初始质量浓度对HLS-6吸附Cr(VI)的影响.结果表明,在pH为1~2、温度为25~30℃时,吸附率高达96.7%;Cr(VI)初始质量浓度增加,吸附容量增大,但吸附率减小:当Cr(VI)初始质量浓度分别为9.42和91.7mg/L时,HLS-6在48 h内对Cr(VI)的吸附率分别为100%和50.8%,吸附容量分别为4.9和23.3mg/g;吸附菌在菌龄为3~5 d时对Cr(VI)的吸附率最大.  相似文献   

14.
复合异养脱氮菌群脱氮性能研究   总被引:1,自引:0,他引:1  
采用传统微生物分离纯化方法,从焦化废水活性污泥中筛选得到4株高效去除氨氮(NH4+-N)和总氮(TN)的异养硝化细菌C16、C17、YX1、YX2。经96h培养,4株菌的氨氧化率均在90%左右,TN去除率也达到了68%以上。组合试验研究表明,4株菌组成的复合菌在降解NH4+-N和去除TN时均比单一菌株和其他组合菌的效果好。经24h培养,四株菌组成的复合菌群的氨氧化率可达95%,TN去除率也达到了91%。  相似文献   

15.
16种EPA-PAHs复合污染土壤的菌群修复   总被引:3,自引:1,他引:2  
通过富集筛选获得一组PAHs降解混合菌群和3株降解单菌,利用变性梯度凝胶电泳(DGGE)技术分析混合菌群的组成,对16种多环芳烃(PAHs)复合污染土壤进行生物修复,同时考察混合菌群和单菌株在PAHs复合污染土壤中的生物修复效果。结果表明:混合菌群主要由3株已分离获得的降解单菌和5株未可分离培养的单菌组成;经过30 d的生物修复,混合菌群对土壤中总PAHs的降解率(54.17%)高于单一菌株(28.40%,31.95%,24.64%),并且对高相对分子质量PAHs的降解表现出了较大的优势,4环、5环、6环PAHs的降解率分别可达到71.26%、39.76%和42.86%;利用混合菌群来修复16种PAHs复合污染的土壤,可以避免一些未可分离培养的关键菌株的丢失,使PAHs的降解更加全面有效。  相似文献   

16.
克雷伯氏菌N-5对三苯基锡的降解性能   总被引:2,自引:0,他引:2  
通过耐受性实验,得到三苯基锡(TPT)高耐受性细菌N-5、N-6和酵母菌Ja、Jc.经初步测试,发现克雷伯氏菌N-5菌株的降解性能较为理想.性能研究表明,当菌龄为36 h且水样中菌质量浓度、TPT质量浓度、外加碳源葡萄糖质量浓度分别为14g/L、5、5 mg/L时,该菌对TPT的降解效果最好,5 d降解率达到50%左右.扫描电镜观察显示,该菌在有TPT存在的环境中,细胞发生明显变化,其变化程度随着TPT质量浓度的提高和处理时间的延长而加大,刺激强度较大时细胞变皱.且该菌体有集中起来抵御不良生长环境的自我保护机制.  相似文献   

17.
从内蒙古某蓖麻榨油厂排污口采样,分离筛选出10株能降解废弃蓖麻基润滑油菌株,其中T-9菌株降解润滑油的能力较强,该菌株最适降解pH值为5.0,降解温度30℃,在1%~5%的NaCl中能较好生长.通过菌落形态与生理生化实验,初步鉴定该菌株为假单胞菌属(Pseudomonas).在润滑油质量浓度为10 g/L,初始pH值为5.0,180 r/min,30℃下培养7 d后,采用改进的CEC-L-33-A-93方法测得其对废弃蓖麻基润滑油的降解率为72%.采用GC/MS对降解产物进行分析,测得其对废弃蓖麻基润滑油降解率为80%,该菌株具有良好的蓖麻基润滑油降解能力.  相似文献   

18.
菌株8-A-2对萘降解特性的初步研究   总被引:6,自引:1,他引:6  
从济南炼油厂附近的污染土壤中,分离出能高效降解烃类的菌株8-A-2,初步鉴定为假单胞菌属。菌株8-A-2对萘降解特性的初步研究表明:此菌株能以萘为惟一碳源进行生长,并且确立了最适合的培养条件。在含萘0.2%的无机盐培养基上生长,35℃摇床培养48h,降解率可达98%以上。表明在温度为35℃,pH值为7.0,萘的含量为0.2%时,该菌株对萘的降解率最好。  相似文献   

19.
从30个土样中筛选出3株高效降解原油的菌株,它们为DCH-16,DCH-19和DCH-20,7天后原油降解率分别为75.6%,80.3%和73.2%.经鉴定,分别是脂肪酸芽孢杆菌属Alicycolobacillus,芽孢肠状杆菌属Sporomaculum和盐芽孢杆菌属Halobacillus.将此3株高效降解原油菌在原油培养基中进行混合培养,结果表明,在相同条件下混合菌原油降解效果优于单菌.将混合菌株(DCH-19 DCH-20)用于处理原油时,原油降解率达89.1%;用于胜华炼油厂废水处理时,原油降解率为80.2%,表明该混合菌株有较好的降解原油能力.  相似文献   

20.
W1-2 菌株是以好氧活性污泥为菌源, 以四溴双酚 A(tetrabromobisphenol A, TBBPA)驯化筛选得到的一株新型好氧降解菌株. 16S rDNA 序列表明, W1-2 菌株属于假单胞菌属(Pseudomonas sp.), 主要以酶降解的模式去除 TBBPA. 在 30 ℃、pH=7、 150 r/min 和无其他碳源辅助的条件下, W1-2 菌株对 10 mg/L TBBPA 5 d 的好氧降解率可达 91.4%. 温度、转速、pH 值及 TBBPA 的质量浓度均会影响 W1-2 菌株的降解特性, 其中 pH 值对降解率的影响最大. W1-2 菌株最适宜降解和生长的环境条件为 150 r/min、30~ 35 ℃, TBBPA 质量浓度为 10 mg/L 和 pH=8. 此外, W1-2 菌株也是为数不多的无需其他碳源支持、能在高 TBBPA 质量浓度(30 mg/L)和低氧(0 r/min)条件下仍保持高降解能力的好氧降解菌株. 对 W1-2 菌株的研究, 为探究好氧环境下能降解 TBBPA 的微生物的修复提供了新的视角.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号