首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
基于密度泛函理论的B3LYP方法,在6-311+G(2df)基组水平上研究单水协同作用下的甲硫氨酸(Met)分子手性转变反应过程,寻找Met分子手性反应过程中各中间体与过渡态的极值点结构,绘制单水协同作用下完整的Met分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:单水协同作用下S型Met分子手性C上的H原子以羧基内10O-19O原子为桥梁,转移至手性C原子的另一侧,实现从S型到R型Met分子的手性转变;该路径有4个中间体和5个过渡态,最大反应能垒为199.275 5kJ/mol,来源于第2个过渡态TS_2-S-Met1H_2O-2.  相似文献   

2.
基于密度泛函理论B3LYP,在6-311+G(2df)基组水平上研究双水复合条件下的天冬酰胺分子手性转变过程.寻找天冬酰胺分子手性反应过程中各过渡态与中间体的极值点结构,绘制双水复合条件下完整的天冬酰胺分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:双水复合条件下S型天冬酰胺分子手性C原子上的H原子以羧基上的O原子为桥梁,转移至手性C原子的另一侧,实现从S型到R型天冬酰胺分子的手性转变;双水复合条件下该路径有4个中间体和5个过渡态,最大的反应能垒为317.948 1kJ/mol,来源于第4个过渡态TS2-R-Asn2H2O-1.  相似文献   

3.
基于密度泛函理论B3LYP,在6-311+G(2df)基组水平上研究非限域单体天冬酰胺(Asn)分子手性转变第二反应通道过程,寻找反应过程中各极值点结构,绘制完整的Asn分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:S型Asn分子手性C原子上的4H原子以羧基上的10O原子为桥梁,转移至手性C原子的另一侧,实现从S型到R型Asn分子的手性转变;该路径有2个中间体和3个过渡态,最大的反应能垒为313.222 1kJ/mol.  相似文献   

4.
基于密度泛函理论B3LYP/6\|311+G(2df)水平上的计算, 研究单水协同作用下的苯丙氨酸分子手性转变反应过程. 寻找得到反应过程中4个中间体与5个过渡态的各极值点结构, 绘制单水协同作用下完整的苯丙氨酸分子手性转变路径反应势能面, 并分析各极值点的几何与电子结构特性. 结果表明: 单水协同作用下S型苯 丙氨酸分子手性C上的H原子以羧基上的O原子为桥梁, 转移至手性C原子的另一侧, 实现了从S型到R型苯丙氨酸分子的手性转变; 单水协同作用下该路径有4个中间体和5个过渡态, 最大的反应能垒为200.588 2 kJ/mol, 来源于第四个过渡态TS2-R-Phe&1H2O-2.  相似文献   

5.
基于密度泛函理论的B3LYP方法,在6-311+G(2df)基组水平上考察双水协同作用下苯丙氨酸分子的手性转变过程.通过寻找反应过程中过渡态和中间体的极值点结构,绘制双水协同作用下完整的苯丙氨酸分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:双水协同作用下S型苯丙氨酸分子手性C上的H原子以羧基上的O原子为桥,转移至手性C原子的另一侧,实现从S型到R型苯丙氨酸分子的手性转变;双水协同作用下该路径有4个中间体和5个过渡态,最大反应能垒为173.808 1kJ/mol,来源于第二个过渡态TS_2-S-Phe2H_2O-2.  相似文献   

6.
基于密度泛函理论B3LYP,在6-311+G(d,p)基组水平上研究非限域单体和水环境下亮氨酸(Leu)分子的手性转变机制.通过寻找反应过程中各极值点的结构,绘制水环境下Leu分子的手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:水环境下S型Leu分子手性C原子上的H原子以羧基上的O原子为桥梁,转移至手性C原子的另一侧,实现了从S型到R型Leu分子的手性转变;水环境下该路径有4个中间体和5个过渡态,来源于第一个过渡态TS1-S-Leu1H_2O-1的最大反应能垒为57.235 9kJ/mol,单体Leu分子手性转变第一个过渡态TS1-S-Leu的最大反应能垒为145.452 7kJ/mol.即单个水分子作为H转移桥梁可降低反应能垒.  相似文献   

7.
基于密度泛函理论的B3LYP方法, 在6-311+G(-2df-)基组水平上考察非限域条件下单体异亮氨酸分子的手性转变过程. 通过寻找包括过渡态和中间体的反应过程各极值点结构, 绘制非限域条件下完整的异亮氨酸分子手性转变路径反应势能面, 并分析各极值点的几何及电子结构特性. 结果表明: [JP2]非限域条件下, S型异亮氨酸分子手性C上的H原子以羧基上的O原子为桥梁, 转移至手性C原子的另一侧, 实现了从S型到R型异亮氨酸分子的手性转变; 非限域条件下, 该路径有4个中间体和5个过渡态, 最大反应能垒为325.824 6 kJ/mol, 来源于第二个过渡态TS2-S-Ile.  相似文献   

8.
基于密度泛函理论的B3LYP方法, 在6-311+G(2-df-)水平上, 研究双水环境中的苯丙氨酸分子的手性转变过程. 通过寻找过渡态和中间体的反应过程各极值点结构, 绘制苯丙氨酸分子手性转变路径反应势能面, 并分析各极值点的几何和电子结构特性. 结果表明: S-3-Phe&2H2O型苯丙氨酸分子手性C上的H原子以羧基上的O原子为桥梁, 转移至手性C原子的另一侧, 实现从S-3-Phe&2H2O型到R-3-Phe&2H2O型苯丙氨酸分子的手性转变; 该路径有4个中间体和5个过渡态, 最大反应能垒为221.854 8 kJ/mol, 来源于第四个过渡态TS2-S-3-Phe&2H2O.  相似文献   

9.
基于密度泛函理论,在ONIOM(CAM-B3LYP/6-31G(d,p):UFF)基组水平上,研究1F-分子筛限域条件下的天冬酰胺(Asn)分子手性转变过程,寻找天冬酰胺分子手性反应过程中各过渡态与中间体的极值点结构,绘制1F-分子筛限域条件下完整的天冬酰胺分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:1F-分子筛限域条件下S型天冬酰胺分子手性C上的H原子以羧基上的O原子为桥梁,转移至手性C原子的另一侧,实现从S型到R型天冬酰胺分子的手性转变;最大的反应能垒为321.361 2kJ/mol,来源于第二个过渡态TS_1-S-Asn@1F-MOL.  相似文献   

10.
基于密度泛函理论B3LYP/6-311+G(2df)水平, 研究非限域条件下单体天冬酰胺分子的手性转变过程. 通过寻找过渡态和中间体反应过程的各极值点结构, 绘制天冬酰胺分子的手性转变路径反应势能面, 并分析各极值点的几何及电子结构特性. 结果表明: S型天冬酰胺分子手性碳上的氢原子以羧基上的氧原子为桥梁, 转移至手性碳原子的另一侧, 实现了从S型到R型天冬酰胺分子的手性转变; 该路径有4个中间体和5个过渡态, 最大的反应能垒为316.372 8 kJ/mol, 来源于第4个过渡态TS2-R-Asn.  相似文献   

11.
使用基于密度泛函理论B3LYP/6-31+g(d,p)水平上的计算,研究孤立条件下的α-丙氨酸分子手性转变过程.通过寻找包括过渡态和中间体的反应过程各极值点结构,绘制完整的α-丙氨酸分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:S型α-丙氨酸分子手性碳上的氢原子以羧基上的氧原子为桥梁,转移至手性碳原子的另一侧,实现了从S型到R型α-丙氨酸分子的手性转变;该路径有1个中间体和2个过渡态,最大的反应能垒为326.6kJ/mol,来源于第一个过渡态TS1.  相似文献   

12.
使用基于密度泛函理论B3LYP/6-311+G(2df)水平上的计算,研究单水复合条件下的苯丙氨酸分子(Phe)手性转变过程,寻找形成过渡态、中间体反应过程中各极值点结构,绘制完整的苯丙氨酸分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:S-Phe1H_2O-1型苯丙氨酸分子手性碳上的氢原子以羧基上的氧原子为桥梁,转移至手性碳原子的另一侧,实现了从S-Phe1H_2O-1型到R-Phe1H_2O-1型苯丙氨酸分子的手性转变;该路径有4个中间体和5个过渡态,最大的反应能垒为312.9596kJ/mol,来源于第二个过渡态TS2-S-Phe1H_2O-1.  相似文献   

13.
基于密度泛函理论, 在B3LYP/6-31+g(d,p)水平上研究水环境下布洛芬分子的手性转变机理, 确定水环境下布洛芬分子从S型向R型转变过程中的过渡态和中间体等极值点结构; 在MP2/6-31++g(d,p)水平上计算各稳定点和过渡态体系的单点能, 并对体系能量进行零点振动能修正; 绘制水环境下布洛芬分子手性
转变反应路径上H转移和中间体异构过程的势能面. 结果表明: 水环境下布洛芬分子手性转变有两条路径, 其H转移过程均可通过1个和2个水分子作为桥梁实现, 最高能垒均来自于手性C的H向羰基O的转移过程, 且均以2H2O为桥梁时能垒最低.  相似文献   

14.
基于密度泛函理论中的B3LYP方法, 在6-31+G(d,p)基组水平上理论研究限域BN纳米管中苯丙氨酸(Phe)分子手性对映体的转变过程. 通过寻找反应过程中各过渡态和中间体的极值点基本结构, 绘制BN纳米管限域条件下Phe分子手性转变路径上各反应势能面. 结果表明: 在BN纳米管限域条件下, S-Phe@BNNT分子手性1C原子上的12H原子以羧基上的9O原子为桥梁, 转移至手性1C原子的另一侧, 实现了从S-Phe@BNNT到R-Phe@BNNT[KG*8]分子手性对映体的转变.  相似文献   

15.
基于密度泛函理论中的B3LYP方法, 在6-31+G(d,p)基组水平上理论研究限域BN纳米管中苯丙氨酸(Phe)分子手性对映体的转变过程. 通过寻找反应过程中各过渡态和中间体的极值点基本结构, 绘制BN纳米管限域条件下Phe分子手性转变路径上各反应势能面. 结果表明: 在BN纳米管限域条件下, S-Phe@BNNT分子手性1C原子上的12H原子以羧基上的9O原子为桥梁, 转移至手性1C原子的另一侧, 实现了从S-Phe@BNNT到R-Phe@BNNT[KG*8]分子手性对映体的转变.  相似文献   

16.
使用从头算的HF方法,采用6-31G(d)基组,优化了S与R型α—丙氨酸分子的分子几何,计算了优化构型下的电子结构.依据优化后的构型,对α—丙氨酸分子对映体进行了手性转变可能路径的分析.首先,在HF/6-31G(d)水平下进行了手性转变过程的过渡态探索与中间体的几何构型优化,找到了手性转变的可能路径,并得到了反应能垒;而后,又在HF/6-31G(d)水平下对过渡态进行了IRC计算,验证了过渡态的可靠性.  相似文献   

17.
采用基于密度泛函理论的B3LYP方法和微扰理论的MP2方法,研究了布洛芬分子手性转变裸反应和水助质子从手性碳向羰基迁移的机理。分子结构分析表明:水助质子从手性碳向羰基迁移过程的8元环过渡态b TS2·2H_2O和10元环过渡态b TS2·3H_2O对应的氢键键角都远大于6元环过渡态b TS2·1H_2O;过渡态b TS2·2H2O的8元环结构基本共面,过渡态a_TS1·3H_2O和b TS2·3H_2O的10元环结构明显偏离平面。反应路径研究发现:标题反应有6条路径,分别是质子只以羰基氧、以甲基碳和羰基O及以羧基和苯环联合作桥,从手性C的一侧迁移到另一侧。势能面计算表明:质子以羧基和苯环联合作桥迁移的路径为优势反应路径,裸反应的决速步吉布斯自由能垒为287.1 k J·mol~(-1),2个水分子构成的链使决速步的吉布斯自由能垒降为144.9 k J·mol~(-1)。结果表明:布洛芬分子的手性转变存在多条可能的路径,水分子对布洛芬分子的H迁移异构反应有明显的催化作用,生命体内水分子的存在、温度的涨落、分子的频繁碰撞和某种酶的作用等综合因素,是导致左旋布洛芬旋光异构的原因。  相似文献   

18.
采用密度泛函理论的B3LYP方法和微扰论的MP2方法,计算氨基作为H转移桥梁时,单体α-Ala分子手性转变过程中极小点和过渡态的结构、零点振动能和相关体系的单点能.反应通道研究发现:氨基作为H转移桥梁,单体α-Ala分子的手性转变有两个通道,一个是手性碳的H直接以氨基为桥,转移到手性碳另一侧,α-Ala分子实现手性转变;另一个是手性碳的H依次以羰基和氨基为桥,转移到手性碳另一侧,α-Ala分子实现手性转变.势能面计算表明:第一反应通道上的最高能垒为266.1kJ·mol-1,低于第二通道和只以羰基为H转移桥梁的手性转变反应通道的最高能垒319.9kJ·mol-1,也低于羧基作桥和羰基与甲基共同作桥的最高能垒316.3和337.4kJ·mol-1.结果表明:H只以氨基为桥,从手性碳的一侧迁移到另一侧的通道,是单体α-Ala手性转变反应的最优通道.  相似文献   

19.
采用量子力学与分子力学组合的ONIOM方法, 研究限域在扶手椅型单壁氮化硼纳米管(SWBNNT)内赖氨酸(Lys)分子手性转变的反应机理. 采用原子中心密度矩阵传播(ADMP)分子动力学方法, 研究Lys分子在SWBNNT(5,5)内手性转变反应通道入口与出口势能面上的动态反应路径, 给出中间体和产物的微观动态反应图像. 结果表明: 随着纳米管管径的减小, 限域其中的Lys分子骨架C原子间的键角明显增大; 手性C上的H与氨基N的距离逐渐变小; 在SWBNNT(5,5)内, 通过2个基元反应Lys分子实现了手性转变; 在SWBNNT(6,6)和SWBNNT(7,7)内, 通过3个和4个基元反应Lys分子实现了手性转变 ; 在SWBNNT(5,5)内, Lys分子手性转变反应决速步骤自由能垒降为最低值190.1 kJ/mol. 在 SWBNNT(7,7)内, 决速步骤能垒与裸反应基本相同.  相似文献   

20.
采用量子力学与分子力学组合的ONIOM方法,研究限域在扶手椅型单壁氮化硼纳米管(SWBNNT)内赖氨酸(Lys)分子手性转变的反应机理.采用原子中心密度矩阵传播(ADMP)分子动力学方法,研究Lys分子在SWBNNT(5,5)内手性转变反应通道入口与出口势能面上的动态反应路径,给出中间体和产物的微观动态反应图像.结果表明:随着纳米管管径的减小,限域其中的Lys分子骨架C原子间的键角明显增大;手性C上的H与氨基N的距离逐渐变小;在SWBNNT(5,5)内,通过2个基元反应Lys分子实现了手性转变;在SWBNNT(6,6)和SWBNNT(7,7)内,通过3个和4个基元反应Lys分子实现了手性转变;在SWBNNT(5,5)内,Lys分子手性转变反应决速步骤自由能垒降为最低值190.1kJ/mol.在SWBNNT(7,7)内,决速步骤能垒与裸反应基本相同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号