首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
R是具有单位元的交换Noether环,xR上的正合零因子。研究了正合零因子下模的Gorenstein同调维数,证明了若M是Gorenstein投射(内射,平坦)R-,M/xM是Gorenstein投射(内射,平坦)R/xR-模,得到了有关维数的结论。对Ding投射(内射)R-模可得类似的结论。  相似文献   

2.
考察了一些特殊模的同调维数,并得到相应的结果,从而一些已知的结论可作为我们的推论  相似文献   

3.
通过引入伪内射模的概念,定义了伪内射维数和伪内射整体维数,论证了伪内射维数和伪内射整体维数的关系;当环R是半单环和左遗传环时,给出伪内射整体维数的性质,证明了环R是整环时伪内射模所具有的性质。  相似文献   

4.
5.
研究了Cartan-Eilenberg Gorenstein AC-内射(投射)复形的若干等价刻画。证明了复形G是Cartan-Eilenberg Gorenstein AC-内射(投射)复形当且仅当G具有Cartan-Eilenberg强完全内射(L完全投射)分解。并且研究了复形的Cartan-Eilenberg Gorenstein AC-内射(投射)维数。  相似文献   

6.
主要研究了幂级数环R[[X]]与环R上的模的平坦性与内射性之间的关系.证明了当R是一个完全凝聚交换环时,如果M是一个内射或平坦R[X]-模,则M是一个内射或平坦R-模;如果M是一个平坦R-模,则R[X]×RM是一个平坦尺[x]-模,设M是一个R[x]-模。如果M是R内射的,则HomR(R[X],M)是内射R[X]-模.我们证明了idR(M)=IdR[[x]]/f(x))(HornR(R[[X]]/(f(x)),M)),fdR(M)=fdR[[X]]/f(x))(R[[x]]/f(x))×RM.).  相似文献   

7.
本文研究了Noether环上有限生成模的投射维数和内射维数,推广了有关Noether局部环上有限生成模的投射维数和内射维数的结果。  相似文献   

8.
给出了ZP-内射维数以及ZP-平坦维数的定义,揭示了左ZP-内射维数l.zp.ID(R)=0及右ZP-平坦维数r.zp.FD(R)=0的环,即它们为非奇异环,并给出等价描述.讨论了环R的左ZP-内射维数l.zp.ID(R)≤n以及环R的右ZP-平坦维数r.zp.FD(R)≤n的等价刻画,证明了环R上的模类ZPI若满足单同态的上核封闭且l.zp.ID(R)< SymboleB@ ,则l.zp.ID(R)=r.zp.FD(R)=l.zp-id(RR),并证明ZP-内射左R-模的商模是ZP-内射模当且仅当模类ZPI满足单同态的上核封闭且l.zp.ID(R)≤1.  相似文献   

9.
讨论了分次张量积及分次单模的同调维数,证明了一个分次单模的分次平坦维数等于它的分次内射维数。  相似文献   

10.
研究了强极大平坦模的性质和环的左整体强极大平坦维数,得到环的强极大平坦维数不超过正整数n;利用环的左整体强极大平坦维数给出了环的左整体维数的一个上界估计.  相似文献   

11.
我们从投射模和内射模的交换图定义中,可以发现它们是对偶命题,可随着研究的深入,发现它们的对偶性不是很好,例如所有的内射模都有内射包络,而所有的投射模不一定有投射覆盖.本文从维数角度给出了内射模和平坦模的一个等价刻画,从而再次说明了内射模和平坦模具有更好的对偶性.  相似文献   

12.
我们从投射模和内射模的交换图定义中,可以发现它们是对偶命题,可随着研究的深入,发现它们的对偶性不是很好,例如所有的内射模都有内射包络,而所有的投射模不一定有投射覆盖.本文从维数角度给出了内射模和平坦模的一个等价刻画,从而再次说明了内射模和平坦模具有更好的对偶性.  相似文献   

13.
设R是含个左零因子的环。讨论:在n+1到n^2-1之间,环R的阶m的取值情况。  相似文献   

14.
证明了具有n(>2)个左(右)零因子的环R,当|R|=n22时,必有n=2s+1(s∈N),|R|=22s+1,且R的特征是2,4或8.又当R是特征为2的可换环时,R只能是有4个零因子的8元环.  相似文献   

15.
素内射模     
利用同调代数理论讨论了素内射模,得到了素内射模的商模仍然是素内射模的刻画.通过引入Y-环的概念,得到了素内射模和内射模等价的充分必要条件.此外,还对素内射维数为0和1的模进行了一些研究.  相似文献   

16.
作为直内射模和广义内射模的自然推广,引入了广义直内射模的概念,得到了若干性质,证明了模⊕in=1M i是广义直内射模当且仅当每个模Mi(i=1,2,......n)是广义直内射模.  相似文献   

17.
直内射的概念是(拟)内射的推广,它是由W.K.Nicholson于1976年首先引进的。本文研究直内射模的性质,并且给出一个R-模是直内射模的充分必要条件。  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号