共查询到19条相似文献,搜索用时 93 毫秒
1.
本文采用神经网络对二附非线性系统进行特征辩识,并将其用于自适应控制,从而得到了一种新型的自适应控制方法。仿真实验表明该方法具有很强的学习能力和自适应性。 相似文献
2.
3.
非线性系统的神经网络逆模型控制 总被引:1,自引:0,他引:1
刘坤 《南京工程学院学报(自然科学版)》2004,2(3):40-45
利用神经网络逼近任意非线性的能力 ,将其与非线性逆系统相结合 ,对非线性系统的逆模型进行建模 ,对实现的伪线性系统设计自适应控制进行综合 ,动态神经网络在线消除系统的近似逆误差和正向模型的辨识误差 ,设计权值调整规律为 w∧·=-λ·eTPbΦ(r ,r· ,v)‖e‖ p >E0‖e‖ p >E,仿真结果表明其有效 . 相似文献
4.
给出了一种基于模糊神经网络的模型参考自适应控制方案。首先,构造了一种运用递推预报误差(RPE)算法的多层前向神经网络,并用其对被控对象建模,然后,又构造了一种模糊神经网络控制器(FNNC)。从而为一类难以建立精确数学模型的非线性被控对象提供了一种新的自适应控制方法,信息结果验证了其有效性。 相似文献
5.
基于RBF神经网络的伺服系统模型参考自适应控制 总被引:1,自引:2,他引:1
张天瑜 《云南民族大学学报(自然科学版)》2009,18(1)
为进一步提高控制质量,提出一种RBF神经网络模型参考自适应控制策略,设计出伺服系统的控制方法,并给出RBF神经网络辨识模型参数的学习过程.仿真结果表明采用该策略控制效果良好,完全满足控制要求. 相似文献
6.
提出了神经网络直接逆控制的一种策略,实现对神经网络控制器的在线自校正.仿真结果表明,伺服系统响应快、精度高、无超调. 相似文献
7.
本文介绍了一种基于BP神经网络的正弦波永磁同步电机(PMSM)智能控制方法。同传统的PID控制相比较,基于神经网络的智能控制具有自学习、适应环境变化等优点。将BP神经网络模型参考自适应控制应用于PMSM,其仿真结果表明这种智能控制具有很强的鲁棒性、良好的动态和稳态特性。 相似文献
8.
可调增益的模型参考自适应控制及其仿真 总被引:1,自引:0,他引:1
针对一类实际工业受控对象的增益呈现缓时变的情况,本文采用的一种自适应控制方案-具有可调增益的模型参考自适应控制系统,通过对其在Matlab之Simulink中进行仿真,结果表明这种方案可以有交地抑制受控对象参数的缓时变对系统性能的影响。 相似文献
9.
利用神经网络自适应逆控制消除干扰和噪声 总被引:1,自引:0,他引:1
神经网络的自适应逆控制具有对鲁棒性高、自适应能力强和难以精确建立数学模型的工业对象,尤其是大滞后、非线性、不确定性及时变的对象.利用BP神经网络构成逆控制器,提出一种基于神经网络的模型参考自适应逆控制系统.仿真实验表明,此系统具有良好的消除对象干扰和敏感噪声的作用,可以在工业控制中广泛应用. 相似文献
10.
11.
提出一种新的PID型神经网络的自适应控制系统,该控制系统采用对角递归神经网络辨识对象的正向模型,采用一种新型神经网络控制器产生控制量,与常规PID控制不同的是,该控制量不再是误差信号的比例、积分和微分量的简单线性组合,而是这些信号的一种非线性组合,从而可以有效地解决常规PID控制器存在的快速性和超调量之间的矛盾.仿真实验表明,这种新型控制系统具有较强的自适应性和鲁棒性. 相似文献
12.
豆勤勤 《重庆工商大学学报(自然科学版)》2021,38(2):23-27
针对单力臂机械手的控制,提出了一种基于RBF神经网络模型的控制方法;RBF神经网络即径向基函数,它本身是具有单隐层的三层前馈网络,从输入空间到输出空间的映射呈现非线性,但是从隐含层空间到输出空间的映射却呈现线性,又由于RBF网络它采用高斯基函数作为作用函数,它的输出与部分调参数有关,在输入空间的有限范围内不为零,是一种... 相似文献
13.
周巍 《太原理工大学学报》1998,29(3):256-259
所论系统的控制由两个神经网络完成,即对象放识器和系统控制器。并且提出了一种 新的学习算法,它能利用存贮于辨识网络的信息改进控制策略。该控制系统可以对非线性系统,不确定系统等进行无监督的学习控制。 相似文献
14.
王启志 《华侨大学学报(自然科学版)》2005,26(4):397-400
逆模型控制是一个新颖的控制方法.但在实现上会遇到很多困难,如被控对象的大滞后、时变性和不确定性等,使精确的对象数学模型难以建立.文中根据工业对象的特点及对控制系统高鲁棒性与高自适应性的要求,提出一种改进的神经网络的模型参考自适应逆控制系统.仿真试验表明,此系统具有良好的跟踪给定信号和消除对象干扰的作用. 相似文献
15.
根据连续型Hopfield神经网络的特性,设计基于Hopfield神经网络自适应控制系统,解决当前大多数控制系统需要外界参与的问题.设计一个三元组的Hopfield神经网络,并通过自反馈机制更新神经元的权重,完成自适应控制的任务.通过MATLAB平台仿真建立Hopfield神经网络,构建神经网络输出与参考标准输出之间的对比实验.结果表明,Hopfield能够在有限次数内逼近参考标准输出,从而完成控制任务.基于Hopfield神经网络的自适应控制系统有较高的精度,能够完成常见的设备控制,具有较强的可行性和便捷性. 相似文献
16.
为了实现注射速度的精确控制,针对其非线性时变的动态特性,提出了基于神经网络逆系统的控制方法.采用M.Rafizadeh模型描述注射速度系统特性,通过求解该系统的相对阶证明了系统的可逆性.由于注射速度系统逆模型的解析形式难以获得,因此构造了基于RBF神经网络的注射速度逆系统,并将该系统与常规PID控制相结合,对注射速度实现复合控制,解决了基于RBF神经网络逆系统的开环控制效果不理想的问题.仿真实验表明,该控制系统具有良好的跟踪性能及抗干扰性能. 相似文献
17.
基于模糊神经模型的自适应单神经元控制系统设计 总被引:1,自引:0,他引:1
提出一种基于模糊神经模型的自适应单神经元控制系统.该控制系统首先根据采集到的输入输出数据建立被控过程模型,并在此基础上引入单神经元控制器.通过李亚普诺夫方法对控制器参数进行在线调节,从而使得系统输出值能够较快跟踪设定值.理论分析和仿真结果表明:本文提出的单神经元控制器和传统的PID控制器具有极其相似的结构,因此,具有结构简单、易于操作的特点,具有较快的跟踪速度,并且控制参数可以在线调节. 相似文献
18.
19.
三温区电加热炉的神经网络模型参考自适应控制 总被引:1,自引:0,他引:1
提出了一种基于神经网络非线性系统的模型参考自适应控制方法,通过在线训练获得反映对象动态持性的神经网络辨识器和神经网络控制器,对三温区电加热炉进行实时控制,仿真结果表明该方法的有效性及其优良性能。 相似文献