首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
在极性晶体中,着重考虑晶格振动的表面光学模对局域在表面的激子的作用,我们将表面极化子的哈密顿推广到激子情形,写出表面的二维激子-声子系哈密顿为  相似文献   

2.
很多学者认为,如果实现激子机制超导电性,那么超导体临界温度T_c将会大幅度提高。但到目前为止还没有一个激子型超导体问世。因此,激子型超导性能否存在的问题比其是否能达到高T_c更为迫切。1973年巴丁等人提出ABB模型,指出在声子机制和激  相似文献   

3.
王永良 《科学通报》1981,26(9):531-531
一、引言最近Balkanski等人观察到只有在混晶中出现的一级Raman散射的多声子谱。Wolford等人分析GaAs_(1-x)P_x混晶中N束缚激子发光的多声子结构,得到了晶格弛豫的S因子与组分x的关系,表明与晶格无序度有明显的对应关系。  相似文献   

4.
B.C.S.超导机制中,电子间通过声子的相互吸引胜过库仑排斥。Frohlich等指出: 对于具有未填满电子壳层的过渡元素,电子与声子相互作用过于小,可能存在非声子的超导机制。我们认为:一个晶格离子如具有未填满  相似文献   

5.
顾秉林 《科学通报》1987,32(10):798-798
完整的哈密顿量由电子、声子、电-声子相互作用三项组成,通过正则变换把电子体系转化为极化子体系,再利用爱因斯坦模型或德拜模型处理声子色散关系,获得等效哈密顿量的四子参量为  相似文献   

6.
崔捷 《科学通报》1991,36(24):1853-1853
半导体超品格和量子阱结构形成了载流子的准二维体系,特别是正方向势阱压缩效应增强了电子-空穴间库仑相互作用,使得二维激子束缚能较三维激子束缚能增大,从而使二维激子跃迁强度和吸收强度迅速增加,使得激子效应在量子阱光跃迁过程中起着比三维体系更重  相似文献   

7.
本文制备了基于红荧烯(rubrene)分子的有机发光二极管,并测量了不同温度和注入电流下器件的磁电导(magneto-conductance,MC).实验发现器件的MC曲线随着磁场的增加主要表现出了3段变化,在室温(300K)低磁场(|B|6 mT)范围内,MC_1在小电流时表现为快速上升,在中等电流时先缓慢上升再下降,在大电流时则为缓慢下降;在中等磁场范围(6 mT|B|17 mT),MC_2在各电流范围均表现为缓慢上升;在高磁场范围(17mT|B|300 mT),MC_3在各电流范围均表现为迅速下降.随着温度的降低(以电流为50μA为例),低磁场范围(|B|6 mT),MC_1在温度为300 K时表现为缓慢上升,温度为250~150 K时则先缓慢上升再下降,温度为100~20 K时表现为缓慢下降;中高磁场范围(|B|6 mT)的MC_2和MC_3的线型则基本不变.对电流密度-电压特性曲线的深入分析发现器件中存在陷阱,由此说明器件中除了自由电荷对三重态激子的解离(Q+T→Q+e+h)以及极化子对间的系间窜越(PP~1?PP~3)作用以外,还包括陷阱辅助的三重态激子淬灭作用(即陷阱束缚的三重态激子与自由的极化子(Tt+P→S0+P_t)和陷阱束缚的极化子与三重态激子(T+P_t→S0+P)之间的作用),这4种微观机制的共同作用导致结构复杂的MC线型,且电流和温度对它们还有较好的调控作用.本研究不仅加深了对rubrene器件中三重态激子与电荷相互作用的理解,而且还丰富了有机磁电导曲线的表现形式.  相似文献   

8.
郝跃  刘忠范 《科学通报》2019,64(4):371-372
<正>利用自旋波或者磁子进行信息传输、处理和存储的磁子型器件,有望构成继基于电荷的第一大类半导体/微电子器件和基于电子自旋的第二大类自旋电子器件之后的第三大类固态微电子器件,能为未来信息科学和技术的可持续发展提供更广阔的拓展空间.从物理角度来讲,除了电子,其他粒子或者准粒子(如中子、磁子等)也可以携带自旋角动量信息,能成为自旋信息的潜在载体.特别是磁子(磁激子),它携带1个?的自旋,可通过铁磁、亚铁磁或反铁磁绝缘体中自旋晶格的元激发而产生;并且磁子是电中性的,它可以用作理想的信  相似文献   

9.
声子晶体与超材料作为一种人工设计的新型材料或结构,具有许多独特和超常的弹性波传播特性,为机械振动的有效控制与弹性波的精准调控提供了一个崭新的研究途径与充满希望的应用机遇.然而,由于传统的声子晶体与超材料在加工制备之后不易根据实际需求重新调整其几何参数和材料属性,大大限制了其实际应用.基于压电或力-电耦合效应的智能压电声子晶体与超材料,通过调节电场即可按需调控结构的振动或波动特性,可大大拓宽传统声子晶体与超材料的应用范围.本文依据压电材料与弹性材料或结构不同的融合形式,试图将智能压电声子晶体与超材料大致分为三类:第一类为单一压电声子晶体与超材料,此类仅由单一的压电材料组成,可以外接电极也可以无外接电极;第二类为内嵌式压电/弹性复合材料型压电声子晶体与超材料,该类由压电散射体埋嵌在弹性基体中而构成,当然也可将压电材料与弹性基体的角色互换;第三类为由外贴式压电片与弹性结构组成的复合型压电声子晶体与超材料,此类将压电片外贴在弹性基体结构(杆、梁、板等)的表面.已有研究表明,相较于其他弹性波调控方式,基于压电或力-电耦合效应的智能压电声子晶体和超材料的主要优势体现在反应迅速,无须改变原有结构的固...  相似文献   

10.
在激光问世之后不久,人们就想到如果利用高功率密度的激光作为泵浦,可以在半导体内产生大量的瓦尼尔(Wannier)激子。这些大半径的激子当浓度足够高时,彼此之间会发生各种相互作用,从而可能出现非常有趣的物理现象——在低温下,高密度的激子气体可以在坐标空间发生相分离,形成激子液体或激子分子液体;也可能在动量空间里经历玻色-爱因斯  相似文献   

11.
朱砚磬  王志强 《科学通报》1966,11(3):118-118
在磁有序物质中,由于交换作用常数受离子间距离变化的影响,其中存在自旋波和声子耦合。大多数非金属反铁磁体是离子晶体,因此,对这类反铁磁体,辐射场在激发一个光频支声子的同时通过自旋波和声子耦合有可能再激发两个自旋波和一个声子,从而茌晶格红外吸收带的高频边缘外形成附加吸收峯。本文利用这种辐射跃迁过程解释了Nio红外光谱的0.24电子伏附加吸收  相似文献   

12.
声子极化激元是晶体中的光学支声子与电磁波耦合形成的元激发,具有独特的中远红外介电响应、低损耗等特性,在波导、超透镜、增强的能量感应与传输等方面展现了巨大的应用潜力,因此近年来发展迅速.声子极化激元的主要实验研究手段是扫描近场光学显微镜技术,但由于缺乏合适的光源,目前在远红外波段的研究严重受限.此外,光子与声子之间大的动量失配问题也限制了光学显微镜激发大动量的声子极化激元.本文介绍了近年来扫描透射电子显微镜电子能量损失谱技术在研究声子极化激元方面的主要进展.相比于近场光学方法,电子能量损失谱具有大动量转移、宽频激发与探测、高空间分辨能力、高激发探测效率、多模式激发等优点,并且能在自支撑样品上测量,避免衬底影响.因此,基于此,研究人员取得了一系列重要研究成果,该方法已成为近场光学方法很好的补充.本文简要总结以上研究进展,并对下一步的研究前景进行了展望.  相似文献   

13.
在蛋白质分子中激发的孤立子的热力学特性   总被引:1,自引:0,他引:1  
庞小峰 《科学通报》1993,38(11):1040-1040
在生命体中关于ATP水解作用所释放的能量的传递问题一直是人们十分关注、但又未解决的重大问题.70年代Davydov提出了一个孤立子模型,认为所释放的这个能量引起了蛋白质分子的局域性涨落和结构畸变,导致氨基酸残基中的内部激发(激子)和分子链的振动的相互作用而“自陷”成一个孤立子,保持自己的能量、动量和其它准粒子特性不变地沿蛋白质分子运动过一段宏观距离.至此以后,许多人广泛深入地研究了这个问题.但近几年研究发现,  相似文献   

14.
陈震  杨决宽  庄苹  陈敏华  朱健  陈云飞 《科学通报》2006,51(13):1601-1605
采用3ω方法在100~320 K温度范围内测试了不同周期长度的InGaAs/InGaAsP超晶格薄膜的导热系数. 结果表明对于周期性超晶格结构, 随着温度的升高, 热传导能力下降; 比较周期长度不同的超晶格结构的测试结果, 发现导热系数会随着周期长度的增大而减小, 并在某一周期长度取得最小值, 但随着周期长度的进一步增大, 导热系数又出现上升趋势, 表明在长周期超晶格结构中界面热阻是影响声子传输的主要因素. 理论计算表明, 对于短周期的超晶格结构, Bragg反射是造成产生最小值的原因之一, 由于声子穿透率的下降, 造成导热系数随着周期长度的增大而减小. 理论与实验研究结果表明, 随着周期长度的增大, 声子的传输规律由声子的波动性过渡到粒子性, 这对实现声子的剪裁具有重要意义, 为设计超晶格结构提供理论基础.  相似文献   

15.
王博  宣益民  李强 《科学通报》2012,(33):3195-3204
传统的宏观传热理论难以准确表征几何结构尺度小于或接近声子平均自由程的高功率电子器件的产热与传热过程,此时器件中能量激发的时间尺度与声子的特征时间尺度相当,甚至小于声子的特征时间尺度,不能满足传统传热理论的假设.本文针对微/纳尺度场效应晶体管的工作过程,建立描述其内部产热及传热特性的多尺度格子-Boltzmann介观模型,通过在模型中引入源项去描述器件内部电子和声子的相互作用,分析计算不同工作状态下晶体管单元的温度分布特征,研究热管理方式对晶体管温度分布的影响,从微/纳尺度揭示了场效应晶体管的产热机理及传热特性,为热设计工作者提供一定的理论依据.  相似文献   

16.
邹炳锁  解思深 《科学通报》2000,45(21):2267-2273
量子点中的极化子效应是当前量子点研究中的重要问题,其特征急需了解,提出了量子点中量子限域极化子的概念,可能性和能量随尺寸的变化规律,指明本征声子和外来声子都可能对其形成有贡献,利用此模型分析了多孔硅体系中的光谱特征。发现表面覆有氧化层的纳米硅的行为十分符合量子限域极化子的特征。  相似文献   

17.
当对陶瓷体的超导电性还不能作出解释时,新的实验数据表明传统的电子声子强耦合机制已不适用。具有转变温度30K到100K的Cu-O钙钛矿型材料超导电性的发现提出了建立有关动力学机制问题。目前金属体系的超导电性是用超导态中点阵振动激发即声子的交换所引起的成对电子吸引相互作用解释的。  相似文献   

18.
王海东  过增元 《科学通报》2010,55(21):2156-2162
热子气可以认为是热传导的主要载体, 是热量传递的载体. 类似于介电体中晶格振动能量量子化定义的声子, 大量的声子组成了声子气. 在气体和金属中则可以根据无规则运动的分子和电子所具有的能量定义热子, 大量无规则运动的热子就组成了热子气. 热子和声子、光子一样都没有静止质量, 但是热子的动质量可以连续变化, 即热子是非量子化的准粒子. 热子气在一定温度梯度驱动下的定向运动就形成了热流. 根据Einstein质能关系可以得到热子的质量为mh=E/c2, 即热能除以光速的平方. 热子气是具有真实质量的可压缩流体, 根据气体动力学原理, 并结合理想气体和金属中电子气的统计规律分别得到了两种体系中热子气的状态方程, 通过流体力学分析方法进一步推导出热子气的动量守恒方程, 它是具有阻尼的波动方程, 也就是普适导热定律. 基于热子气概念得到的普适导热定律可以用于定量研究由于热惯性作用而导致的极端条件下的非Fourier导热现象, 例如在超快速激光加热实验中出现的热波现象. 在通常情况下当热质惯性力作用可以忽略时普适导热定律将退化为Fourier定律. 利用两阶精度的有限差分格式, 计算了超快速飞秒激光加热金属薄膜条件下普适导热定律的热波解, 结果显示热波传递的波动性会随着热子气运动惯性作用的增强而增强.  相似文献   

19.
张杰  夏百战 《科学通报》2022,(12):1337-1346
晶格缺陷(包括旋错和位错等)广泛存在于各种材料,并呈现出优异的物理和力学性能.在经典波动体系,晶格缺陷态首先应用于二维光学系统,实现了晶格缺陷激发的谷极化界面态和束缚态.本文设计了一种三维弹性声子晶体,其单胞在第一布里渊区的K-H方向线性简并.打破单胞的镜像对称性,该三维弹性声子晶体沿第一布里渊区K-H方向的简并线打开而形成完全带隙,激发出谷极化量子霍尔效应.将晶格缺陷态引入具有谷极化量子霍尔效应的三维弹性声子晶体,晶格畸变导致单胞谷极化拓扑相反转而形成界面,实现了弹性波在三维弹性声子晶体的稳健界面传播.基于晶格缺陷的谷极化三维弹性声子晶体拓扑界面态的实现,突破了传统经典波动系统拓扑波导设计的局限性,为三维复杂拓扑波导器件设计提供了良好的技术支撑.  相似文献   

20.
为了研究三重态激子与电荷作用(triplet-charge interaction,TCI)产生磁电导(magneto-conductance,MC)的原因,分别用Al,Li F/Al和Ca等不同功函数的金属作为阴极制作了一系列红荧烯(rubrene)型有机发光器件.在室温下Al电极器件中出现了随磁场增加单调下降的负MC.器件的电流-电压特征曲线表明,Al电极器件中空穴为多余载流子,电子注入困难易形成陷阱电荷.利用rubrene中单重态激子(singlet,S)和三重态激子(triplet,T)的能量共振改变S激子裂变(STT)和T激子聚变(TTA)来调控T激子的比率,并通过更换阴极来改变电子注入势垒高度从而调控电荷(charge,C)的浓度,最终实现对TCI的调控.调控结果表明,Al电极器件中负的MC不应该是T激子与多余空穴通过解离或者散射通道的TCI引起的,而是T与陷阱中的束缚电子通过TCI的去陷阱(T+C_t→S_0+C)通道淬灭导致的.另外,载流子注入较为平衡的Li F/Al和Ca电极器件的MC比Al电极器件的小1个量级,且随磁场的增加先减小后增大,这并非是因为平衡注入器件内的TCI弱,而是由于器件内rubrene功能层中的陷阱容易被电子占满,TCI去陷阱淬灭通道和陷阱捕获淬灭通道对电流的影响变低.因此,载流子陷阱在TCI的磁效应中具有重要地位,使有机功能层中的陷阱尽量多且不易被载流子占满是利用TCI磁效应的重要方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号