首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The co-ordinated function of effector and accessory cells in the immune system is assisted by adhesion molecules on the cell surface that stabilize interactions between different cell types. Leukocyte function-associated antigen 1 (LFA-1) is expressed on the surface of all white blood cells and is a receptor for intercellular adhesion molecules (ICAM) 1 and 2 (ref. 3) which are members of the immunoglobulin superfamily. The interaction of LFA-1 with ICAMs 1 and 2 provides essential accessory adhesion signals in many immune interactions, including those between T and B lymphocytes and cytotoxic T cells and their targets. In addition, both ICAMs are expressed at low levels on resting vascular endothelium; ICAM-1 is strongly upregulated by cytokine stimulation and plays a key role in the arrest of leukocytes in blood vessels at sites of inflammation and injury. Recent work has indicated that resting leukocytes express a third ligand, ICAM-3, for LFA-1 (refs 11, 12). ICAM-3 is potentially the most important ligand for LFA-1 in the initiation of the immune response because the expression of ICAM-1 on resting leukocytes is low. We report the expression cloning of a complementary DNA, pICAM-3, encoding a protein constitutively expressed on all leukocytes, which binds LFA-1. ICAM-3 is closely related to ICAM-1, consists of five immunoglobulin domains, and binds LFA-1 through its two N-terminal domains.  相似文献   

2.
Silver J  Ferrone S 《Nature》1979,279(5712):436-437
DR ANTIGENS are polymorphic cell surface molecules whose expression is controlled by a locus closely linked or identical to the D locus of the major histocompatibility complex (MHC) of man (for reviews see refs 1, 2). They are functionally and structurally homologous to the murine la antigens determined by the I-E subregion of the MHC, a region which has been implicated in the genetic control of immune responses(3,4). Both sets of antigens are mainly expressed on cells associated with immune function (for reviews see refs 1, 2, 5), and are involved in mediating T-cell, B-cell and macrophage interactions required for the generation of immune responses(6-9). In addition, both consist of two non-covalently associated polypeptides, designated alpha and beta, with molecular weights of 34,000 and 28,000, respectively(10). The association of some DR antigens with increased susceptibility to certain diseases (for review see ref. 1) and the genetic restrictions imposed on cellular interactions by the HLA-D region(9,11) may represent the effects of structural variability among DR antigens. The aim of the studies reported here was to examine the nature and degree of structural variation among DR antigens isolated from cultured lymphoid B cells with different DR phenotypes. Such information may provide an understanding of the molecular mechanisms by which DR antigens mediate their function.  相似文献   

3.
D M Altmann  N Hogg  J Trowsdale  D Wilkinson 《Nature》1989,338(6215):512-514
The initiation of a specific immune response is believed to require not only activation through antigen-specific receptors on T cells and B cells but also antigen-independent interactions between accessory molecules. One such molecule is LFA-1, which enhances the avidity of interactions between T cells and antigen-presenting cells, and is possibly involved in signal transduction across the T-cell membrane. Intercellular adhesion molecule-1 (ICAM-1), a surface glycoprotein of relative molecular mass (Mr) 80,000-110,000, has been defined as a ligand for LFA-1, and has been shown to participate in the interaction between T cells and monocytes. The determination of the precise contribution of such accessory molecules to antigen presentation, however, is complicated by the need to analyse against a background of multiple molecular interactions. We have investigated the role of LFA-1/ICAM-1 interactions in antigen presentation directly by quantifying the contribution of ICAM-1 expression to T-cell stimulation using L-cell transfectants that co-express ICAM-1 and HLA-DR. In the case of transfectants expressing modest levels of HLA-DR, co-expression of ICAM-1 is critical for effective HLA class II-restricted and allospecific T-cell activation, pointing to an important role for ICAM-1 in the induction of T-cell responses.  相似文献   

4.
Regulated portals of entry into the cell   总被引:90,自引:0,他引:90  
Conner SD  Schmid SL 《Nature》2003,422(6927):37-44
The plasma membrane is the interface between cells and their harsh environment. Uptake of nutrients and all communication among cells and between cells and their environment occurs through this interface. 'Endocytosis' encompasses several diverse mechanisms by which cells internalize macromolecules and particles into transport vesicles derived from the plasma membrane. It controls entry into the cell and has a crucial role in development, the immune response, neurotransmission, intercellular communication, signal transduction, and cellular and organismal homeostasis. As the complexity of molecular interactions governing endocytosis are revealed, it has become increasingly clear that it is tightly coordinated and coupled with overall cell physiology and thus, must be viewed in a broader context than simple vesicular trafficking.  相似文献   

5.
A Munro  S Bright 《Nature》1976,264(5582):145-152
The genes of the major histocompatibility complex were first known for the part they played in transplant rejection. Recently, however, it has become clear that the products of that region have an important part to play in the control of the immune response, through their effects both on cooperative and on aggressive interactions between cells. It is now possible to guess at the mechanisms which may underly the association of some major histocompatibility antigens with disease.  相似文献   

6.
Intestinal homeostasis and its breakdown in inflammatory bowel disease   总被引:4,自引:0,他引:4  
Maloy KJ  Powrie F 《Nature》2011,474(7351):298-306
Intestinal homeostasis depends on complex interactions between the microbiota, the intestinal epithelium and the host immune system. Diverse regulatory mechanisms cooperate to maintain intestinal homeostasis, and a breakdown in these pathways may precipitate the chronic inflammatory pathology found in inflammatory bowel disease. It is now evident that immune effector modules that drive intestinal inflammation are conserved across innate and adaptive leukocytes and can be controlled by host regulatory cells. Recent evidence suggests that several factors may tip the balance between homeostasis and intestinal inflammation, presenting future challenges for the development of new therapies for inflammatory bowel disease.  相似文献   

7.
Daneman R  Zhou L  Kebede AA  Barres BA 《Nature》2010,468(7323):562-566
Vascular endothelial cells in the central nervous system (CNS) form a barrier that restricts the movement of molecules and ions between the blood and the brain. This blood-brain barrier (BBB) is crucial to ensure proper neuronal function and protect the CNS from injury and disease. Transplantation studies have demonstrated that the BBB is not intrinsic to the endothelial cells, but is induced by interactions with the neural cells. Owing to the close spatial relationship between astrocytes and endothelial cells, it has been hypothesized that astrocytes induce this critical barrier postnatally, but the timing of BBB formation has been controversial. Here we demonstrate that the barrier is formed during embryogenesis as endothelial cells invade the CNS and pericytes are recruited to the nascent vessels, over a week before astrocyte generation. Analysing mice with null and hypomorphic alleles of Pdgfrb, which have defects in pericyte generation, we demonstrate that pericytes are necessary for the formation of the BBB, and that absolute pericyte coverage determines relative vascular permeability. We demonstrate that pericytes regulate functional aspects of the BBB, including the formation of tight junctions and vesicle trafficking in CNS endothelial cells. Pericytes do not induce BBB-specific gene expression in CNS endothelial cells, but inhibit the expression of molecules that increase vascular permeability and CNS immune cell infiltration. These data indicate that pericyte-endothelial cell interactions are critical to regulate the BBB during development, and disruption of these interactions may lead to BBB dysfunction and neuroinflammation during CNS injury and disease.  相似文献   

8.
Phagocytes have a critical function in remodelling tissues during embryogenesis and thereafter are central effectors of immune defence. During phagocytosis, particles are internalized into 'phagosomes', organelles from which immune processes such as microbial destruction and antigen presentation are initiated. Certain pathogens have evolved mechanisms to evade the immune system and persist undetected within phagocytes, and it is therefore evident that a detailed knowledge of this process is essential to an understanding of many aspects of innate and adaptive immunity. However, despite the crucial role of phagosomes in immunity, their components and organization are not fully defined. Here we present a systems biology analysis of phagosomes isolated from cells derived from the genetically tractable model organism Drosophila melanogaster and address the complex dynamic interactions between proteins within this organelle and their involvement in particle engulfment. Proteomic analysis identified 617 proteins potentially associated with Drosophila phagosomes; these were organized by protein-protein interactions to generate the 'phagosome interactome', a detailed protein-protein interaction network of this subcellular compartment. These networks predicted both the architecture of the phagosome and putative biomodules. The contribution of each protein and complex to bacterial internalization was tested by RNA-mediated interference and identified known components of the phagocytic machinery. In addition, the prediction and validation of regulators of phagocytosis such as the 'exocyst', a macromolecular complex required for exocytosis but not previously implicated in phagocytosis, validates this strategy. In generating this 'systems-based model', we show the power of applying this approach to the study of complex cellular processes and organelles and expect that this detailed model of the phagosome will provide a new framework for studying host-pathogen interactions and innate immunity.  相似文献   

9.
Binding of immunogenic peptides to Ia histocompatibility molecules   总被引:11,自引:0,他引:11  
B P Babbitt  P M Allen  G Matsueda  E Haber  E R Unanue 《Nature》1985,317(6035):359-361
Most cellular interactions essential for the development of an immune response involve the membrane glycoproteins encoded in the major histocompatibility gene complex. The products of the I region, the class II histocompatibility molecules (Ia molecules), are essential for accessory cells such as macrophages to present polypeptide antigens to helper T cells. This interaction, antigen presentation, is needed for T-cell recognition of the antigen and its consequent activation. How the Ia molecules regulate the immune response during antigen presentation is not known, although it is commonly thought to result from their association with the presented antigen. Recent studies, including the elucidation of the structure of the T-cell receptor, favour recognition of a single structure, an antigen-Ia complex. Here we report attempts to determine whether purified Ia glycoproteins have an affinity for polypeptide antigens presented by intact cells in an Ia-restricted manner. We first identified the epitope of a peptide antigen involved in presentation. Several laboratories have shown that globular proteins are altered (processed) in intracellular vesicles of the antigen-presenting cell before antigen presentation. A major component of the T-cell response is directed toward determinants found in the unfolded or denatured molecule, and our laboratory has shown that the determinant of the hen-egg lysozyme protein (HEL), presented in H-2k mice to T cells, is a sequence of only 10 amino acids. This portion resides in an area of the native molecule partially buried inside the molecule, in a beta-sheet conformation. To be presented, intact or native HEL must first be processed in acidic intracellular vesicles. Having isolated the peptide responsible for T-cell recognition of HEL, we sought a physical association of this peptide with purified, detergent-solubilized I-Ak molecules from B-hybridoma cells. We have found such an association, which may explain the role of the Ia glycoproteins in cellular interactions.  相似文献   

10.
J J Monaco  H O McDevitt 《Nature》1984,309(5971):797-799
The major histocompatibility complex (MHC) is a cluster of tightly linked genes whose products are of central importance in the functioning of the immune system. Class I and II MHC antigens are integral membrane proteins which regulate cell-surface interactions between T cells and their targets, while class III antigens are components of the complement system of serum proteins. All available evidence indicates that the structure and function of the MHC and its gene products are highly conserved among species (for review, see ref.5). We recently reported the existence in murine cells of a fourth class of MHC-linked polypeptides which are biochemically and genetically distinct from previously identified MHC gene products: BALB.B anti-BALB/c (anti-H-2d) antiserum immunoprecipitates a set of 16 cytoplasmic low-molecular weight polypeptides (LMP) from BALB/c spleen cells and from the WEHI-3 cell line. The production of these peptides is coordinately regulated (by immune interferon) with the production of the class I and II MHC antigens, suggesting that they too are functionally relevant to the immune system. We demonstrate here that these 16 polypeptides are associated with one another in vivo as a very large (580,000-molecular weight, Mr) noncovalent complex. The unusual nature of this complex has allowed the non-immunochemical identification of similar complexes from (serologically negative) H-2b murine cells and from a human cell line. Thus, LMP antigens display two properties in common with other MHC antigens: they are both polymorphic and genetically conserved across species.  相似文献   

11.
Optimal immune responses require both an antigen-specific and a co-stimulatory signal. The shared ligands B7-1 and B7-2 on antigen-presenting cells deliver the co-stimulatory signal through CD28 and CTLA-4 on T cells. Signalling through CD28 augments the T-cell response, whereas CTLA-4 signalling attenuates it. Numerous animal studies and recent clinical trials indicate that manipulating these interactions holds considerable promise for immunotherapy. With the consequences of these signals well established, and details of the downstream signalling events emerging, understanding the molecular nature of these extracellular interactions becomes crucial. Here we report the crystal structure of the human CTLA-4/B7-1 co-stimulatory complex at 3.0 A resolution. In contrast to other interacting cell-surface molecules, the relatively small CTLA-4/B7-1 binding interface exhibits an unusually high degree of shape complementarity. CTLA-4 forms homodimers through a newly defined interface of highly conserved residues. In the crystal lattice, CTLA-4 and B7-1 pack in a strikingly periodic arrangement in which bivalent CTLA-4 homodimers bridge bivalent B7-1 homodimers. This zipper-like oligomerization provides the structural basis for forming unusually stable signalling complexes at the T-cell surface, underscoring the importance of potent inhibitory signalling in human immune responses.  相似文献   

12.
K Pethe  S Alonso  F Biet  G Delogu  M J Brennan  C Locht  F D Menozzi 《Nature》2001,412(6843):190-194
Tuberculosis remains the world's leading cause of death due to a single infectious agent, Mycobacterium tuberculosis, with 3 million deaths and 10 million new cases per year. The infection initiates in the lungs and can then spread rapidly to other tissues. The availability of the entire M. tuberculosis genome sequence and advances in gene disruption technologies have led to the identification of several mycobacterial determinants involved in virulence. However, no virulence factor specifically involved in the extrapulmonary dissemination of M. tuberculosis has been identified to date. Here we show that the disruption of the M. tuberculosis or Mycobacterium bovis Bacille Calmette-Guérin (BCG) hbhA gene encoding the heparin-binding haemagglutinin adhesin (HBHA) markedly affects mycobacterial interactions with epithelial cells, but not with macrophage-like cells. When nasally administered to mice, the mutant strains were severely impaired in spleen colonization, but not in lung colonization. Coating wild-type mycobacteria with anti-HBHA antibodies also impaired dissemination after intranasal infection. These results provide evidence that adhesins such as HBHA are required for extrapulmonary dissemination, and that interactions with non-phagocytic cells have an important role in the pathogenesis of tuberculosis. They also suggest that antibody responses to HBHA may add to immune protection against tuberculosis.  相似文献   

13.
D Simmons  M W Makgoba  B Seed 《Nature》1988,331(6157):624-627
Antigen-specific cell contacts in the immune system are strengthened by antigen-nonspecific interactions, mediated in part by lymphocyte-function associated (LFA) antigens. The LFA-1 antigen is widely expressed on cells of haematopoietic origin and is a major receptor of T cells, B cells and granulocytes. LFA-1 mediates the leukocyte adhesion reactions underlying cytolytic conjugate formation, helper T-cell interactions, and antibody-dependent killing by natural killer cells and granulocytes. Recently, ICAM-1 (intercellular adhesion molecule-1) has been defined as a ligand for LFA-1. Monoclonal antibodies to ICAM-1 block T lymphocyte adhesion to fibroblasts and endothelial cells and disrupt the interaction between cytotoxic T cells and target cells. In addition, purified ICAM-1 reconstituted into artificial membranes binds LFA-1+ cells. ICAM-1 is found on leukocytes, fibroblasts, epithelial cells and endothelial cells and its expression is regulated by inflammatory cytokines. LFA-1 has been placed in the integrin family of cell surface receptors by virtue of the high sequence similarity between the LFA-1 and integrin beta chains. The adhesion ligands of the integrin family are glycoproteins bearing the Arg-Gly-Asp (RGD) sequence motif, for example, fibronectin, fibrinogen, vitronectin and von Willebrand factor. Here we show that a complementary DNA clone ICAM-1 contains no RGD motifs, but instead is homologous to the neural cell adhesion molecule NCAM.  相似文献   

14.
Toll-like receptors (TLRs) and NK cell receptors are the most important receptor superfamilies in innate immunity. TLRs act as the sensor of external pathogens, while NK cells detect alterations in endogenous protein expression on target cells through activating and inhibitory receptors. Accumulating data has demonstrated that TLRs and NK cell receptors can coordinate and regulate each other during immune responses, which contributes to the initiation of innate response and the priming of adaptive responses. TLRs can activate NK cell function directly or with the help of accessory cells in a cytokine or cell-to-cell contact dependent manner. More understanding of the recognition of innate receptors and interactions between them may provide important insights into the design of effective strategies to combat tumor and microbial infections. In this review, we summarize how TLRs and NK cells discriminate the self or non-self components respectively. And importantly, we pay more attention to the role of TLR sig-naling in induction of NK cell activation, responses and the crosstalk between them.  相似文献   

15.
The HLA-D region of the human major histocompatibility complex (MHC) has been shown to be homologous to the murine I region in terms of both structure and function. Both regions encode class II MHC molecules which restrict T-lymphocyte interactions with antigen-presenting cells. We have recently described the MHC restriction and antigen specificities of human T-lymphocyte clones directed at strain A influenza virus. The majority of T-lymphocyte clones recognized antigen in the context of cell surface interaction products encoded by HLA-D/DR genes. However, a few clones recognized antigen presented by cells histoincompatible for D/DR antigens. We report here that some of these clones recognized viral antigens in association with antigens encoded by genes identical with or closely linked to the recently described secondary B-cell (SB) locus of the MHC. This is the first report that SB-restricted antigen recognition may form an integral part of normal, human immune responses.  相似文献   

16.
17.
M Malkovsky  B Loveland  M North  G L Asherson  L Gao  P Ward  W Fiers 《Nature》1987,325(6101):262-265
Interleukin-2 (IL-2), originally described as a growth factor required for sustained proliferation of T cells in vitro is a glycoprotein hormone of known structure which appears to be important for the generation of immune responses in vivo. As well as T lymphocytes, B lymphocytes and large granular lymphocytes with natural killer activity (NK cells) can also respond to IL-2. The action of IL-2 seemed to be limited specifically to lymphocytes, however, and the term 'T-lymphocytotrophic hormone' was used. Here we provide evidence that human monocytes display a substantially increased cytotoxic activity as a direct and rapid response to human recombinant IL-2 but not to human recombinant glycosylated interferon-gamma (IFN-gamma) or lipopolysaccharide. Our results reveal a previously unknown function of IL-2 and suggest its possible involvement in monocyte-T cell interactions.  相似文献   

18.
J Stewart  E J Glass  D M Weir 《Nature》1982,298(5877):852-854
Cell surface interactions involving carbohydrate may be important in immune recognition. Previous work from this laboratory has demonstrated the presence of 'lectin-like' receptors on mouse peritoneal macrophages that bind bacteria by means of their cell wall sugars. Others have shown that Ia molecules can bind antigen at specific sites which may be involved in presenting antigen to the immune system and recent work has shown that these molecules can carry carbohydrate determinants. It has also been found that human Ia molecules can bind to carbohydrates. As cell surface carbohydrate recognition mechanisms have been implicated in other immune interactions sugar-specific receptors may have a function in self--non-self recognition. We show here that the binding of the bacterium Staphylococcus albus to mouse peritoneal macrophages was inhibited by various conventional and monoclonal antibodies to Ia antigens suggesting that an I-region gene product may be associated with the binding of unopsonized bacteria.  相似文献   

19.
免疫原理在业务冲突检测中的应用   总被引:1,自引:0,他引:1  
在线业务冲突检测方法的不足之处主要体现为与现有网络结构不兼容、虚警和漏报.在对业务冲突检测与生物免疫系统之间相似性进行分析的基础上,提出了一种运用生物免疫系统中阴性选择、动态覆盖性和免疫识别机理进行业务冲突在线检测的方法.  相似文献   

20.
 随着肿瘤学、免疫学及分子生物学等相关学科的迅速发展和交叉渗透,肿瘤免疫治疗技术突飞猛进,成为肿瘤治疗新的热点。肿瘤免疫治疗是应用免疫学原理和方法,提高肿瘤细胞的免疫原性和对效应细胞杀伤的敏感性,激发和增强机体抗肿瘤免疫应答,并应用免疫细胞和效应分子输注宿主体内,协同机体免疫系统杀伤肿瘤、抑制肿瘤生长。在某些肿瘤,如黑色素瘤、非小细胞肺癌等,免疫治疗展现出强大的抗肿瘤活性,部分免疫治疗药物已经获得美国FDA批准。2013年《Science》杂志将肿瘤的免疫治疗评为年度最重要的科学突破。免疫治疗成为继手术、放射治疗和化学治疗之后又一种重要的抗肿瘤治疗手段,成为攻克恶性肿瘤的希望。本文综述肿瘤免疫学的历史、发展规律、未来方向及中国的肿瘤免疫发展情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号