共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
基于无迹粒子PHD滤波的序贯融合算法 总被引:1,自引:0,他引:1
针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter, P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle PHDF, UP-PHDF)的序贯融合算法。利用无迹粒子滤波(unscented particle filter, UPF)实现PHDF,由UKF算法得到更好更优的重要性密度函数并从中采样,使粒子的分布更接近多目标概率假设密度分布;另外,为进一步提高滤波算法的性能,实现基于雷达和红外传感器的UP-PHDF序贯融合算法,通过两传感器交替滤波保证目标状态的可观测性。在复杂环境下,仿真结果表明该算法的估计精度和稳定性明显优于单传感器P-PHDF算法。 相似文献
3.
针对势平衡多目标多贝努利(cardinality balanced multi target multi Bernoulli, CBMeMBer)滤波中的量测信息弱化问题,提出一种改进的多目标多贝努利(improved multi target multi Bernoulli, IMeMBer)滤波。该算法通过对漏检目标的多贝努利随机集进行修正,在解决目标数过估问题的同时,避免了CBMeMBer滤波中的量测信息弱化问题。在此基础上,将高斯粒子滤波引入IMeMBer算法中,通过一组高斯粒子近似多贝努利随机集中元素的概率分布,实现被动测角情况下的多目标跟踪。仿真结果表明,所提算法能够以较小的运算代价达到高斯混合粒子劳势估计的概率假设密度滤波相似的跟踪精度,具有良好的工程应用前景。 相似文献
4.
5.
6.
概率假设密度(probability hypothesis density, PHD)滤波是一种有效的多目标跟踪算法。传统的PHD滤波只适用于单传感器,多传感器PHD滤波虽然理论上可行,但计算复杂度过高,实际中只能对其进行近似处理。迭代更新近似算法虽然简单易行,但滤波结果与参与更新的传感器顺序有很大关系,而乘积形式的多传感器PHD滤波近似算法由于存在缩放比例失衡问题,无法应用于工程实际。针对以上问题,提出了一种改进算法,先采用乘积形式计算联合似然,再采用求和形式计算缩放比例。仿真结果表明,该算法能够有效解决缩放比例失衡问题,在滤波性能和目标数估计方面均优于传统的迭代更新近似算法,具有良好的工程应用前景。 相似文献
7.
为解决传感器观测数据具有不确定性和模糊性的多目标跟踪问题, 首先给出了模糊观测的随机子集表示及其似然函数构造方法; 然后利用所构造的似然函数, 并结合概率假设密度(PHD)滤波器来实现模糊观测的多目标跟踪. 仿真结果显示, 标准PHD滤波器在模糊观测下会出现目标数目估计不准确的问题. 针对这一问题, 在分析了该问题产生原因的基础上, 通过改进PHD滤波器的更新过程, 提出了一种单量测独立更新的PHD滤波方法. 仿真结果表明, 在模糊观测下, 改进算法能得到比标准PHD滤波方法更准确的目标数目估计和更高的跟踪精度. 相似文献
8.
基于关联的自适应新生目标强度CPHD滤波 总被引:1,自引:0,他引:1
量测驱动的自适应新生目标强度基数概率假设密度(adaptive target birth intensity cardinalized probability hypothesis density,ATBI-CPHD)滤波器可以在新生目标强度未知的情况下进行多目标跟踪,然而该方法利用所有量测产生新生目标,没有考虑关联问题。为此,本文提出了一种基于数据关联的改进算法。首先,给出了ATBI-CPHD在高斯混合CPHD(Gaussian mixture CPHD, GMCPHD)框架下的实现。其次,在GMCPHD滤波框架下采用一种基于量测标签的方法进行量测估计关联,并引入高斯元标签进行航迹保持,在此基础上提出了一种航迹管理方法。最后采用量测波门进行量测量测关联,利用关联后的量测产生新生目标。仿真结果表明,该算法可以在提高跟踪效果的同时提升计算效率。 相似文献
9.
针对基于压缩型扩展卡尔曼滤波(CEKF)的SLAM算法在状态增广和地图管理两方面的不足,提出了一种改进算法(ICEKF算法).读算法通过增广辅助系数矩阵即可快速完成状态增广,计算复杂度由O(N2)降低为O(NA),其中N和NA分别为全局和局部地图中的路标数.在地图管理上,ICEKF算法采用一种基于欧氏距离的局部地图动态选择方法,避免了CEKF算法对全局地图进行预先划分带来的路标分配等问题.仿真表明ICEKF算法在估计结果上与EKF算法具有一致的最优性,与CEKF算法相比计算量大大降低. 相似文献
10.
针对同步定位与地图构建(simultaneous localization and mapping, SLAM)中状态量高维时变的问题,本文通过综合集中式和分布式实现结构的各自优势,提出了一种基于空间域划分的分布式SLAM算法。该算法依据两个路标点与机器人连线之间的夹角,将整个空间域中的路标点进行区域划分,保证每个子空间域内含有两个不共线的路标点,并将每个空间域内的路标点组合构建观测模型,采用分布式无味粒子滤波器进行机器人位姿的估计,而采用联邦Kalman滤波完成对路标点的估计,并通过设计各子滤波器中粒子分布的调整方式改善了系统在动态重构过程的精度和稳定性。最后,通过实际数据的仿真试验证明所提算法具有更好的实时性和滤波精度。 相似文献
11.
为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方法。首先,改进快速特征点提取和描述(oriented fast and rotated brief, ORB)特征提取过程,采用多尺度网格化的方法提取ORB特征点并利用四叉树均匀分配特征点,提高特征分布离散性。其次,在帧间采用LK(Lucas and Kanade)光流法追踪特征点进行帧间的数据关联,在关键帧对特征点进行描述子的计算和匹配从而实现关键帧间的数据关联,保证算法速度的同时提高定位精度和鲁棒性。最后,基于光流法建立的数据关联得到的初始位姿为后端优化提供初始值,整合ORB特征点重投影误差、惯性测量单元(inertial measurement unit, IMU)预积分误差以及滑动窗口先验误差构建最小化目标函数采用滑动窗口非线性优化进行求解。实验表明,所提方法相比单目视觉惯性系统具有更高的定位精度和鲁棒性,定位精度平均... 相似文献
12.
对迭代无迹卡尔曼滤波算法在SLAM问题中的应用进行仿真研究。通过仿真分析发现,与一般的无迹卡尔曼滤波算法相比,迭代的算法有时无法提高SLAM的精度,继而探讨了SLAM问题中选择采用迭代算法的条件;同时针对迭代算法的观测更新阶段,用阻尼的高斯-牛顿迭代方法改进完全高斯-牛顿迭代方法,从而提出一种改进的基于迭代无迹卡尔曼滤波的SLAM算法。仿真实验对提出的迭代条件进行了验证,仿真结果表明提出的SLAM算法与无迹卡尔曼滤波算法相比,可以进一步提高SLAM问题的估计精度。 相似文献
13.
针对单一智能体在导航过程中存在全球导航卫星系统(global navigation satellite system,GNSS)易受遮挡或干扰,惯性导航存在误差累积的问题,提出基于视觉的分层即时定位与地图构建(simultaneous localization and mapping,SLAM)空地多智能体协同算法。通过建立系统模型,采用基于扩展卡尔曼滤波融合欧氏点、逆深度点、锚定同质点3种不同特征点的分层SLAM算法,实现了对导航系统的辅助和增强。针对空地协同场景设计并开展了仿真实验。结果表明,空地多智能体协同算法可以将位置误差降低40%;而在使用锚定同质点以后,误识别率由49%降低至4%。实验验证该算法具有良好的定位精度、实用性和有效性。 相似文献
14.
15.
The finite set statistics provides a mathematically rigorous single target Bayesian filter(STBF) for tracking a target that generates multiple measurements in a cluttered environment.However,the target maneuvers may lead to the degraded tracking performance and even track loss when using the STBF.The multiple-model technique has been generally considered as the mainstream approach to maneuvering the target tracking.Motivated by the above observations,we propose the multiple-model extension of the original STBF,called MM-STBF,to accommodate the possible target maneuvering behavior.Since the derived MMSTBF involve multiple integrals with no closed form in general,a sequential Monte Carlo implementation(for generic models) and a Gaussian mixture implementation(for linear Gaussian models) are presented.Simulation results show that the proposed MM-STBF outperforms the STBF in terms of root mean squared errors of dynamic state estimates. 相似文献
16.
基于随机集理论的多个声目标融合跟踪 总被引:1,自引:0,他引:1
针对杂波环境下,采用多个被动声传感器跟踪多个声目标的应用场合,建立了多个声目标跟踪的随机有限集模型,采用概率假设密度(probability hypothesis density, PHD)粒子滤波对该模型进行求解。针对PHD滤波器只适用于单传感器的问题,提出了一种实现多个声传感器融合跟踪的方法。该方法在序贯PHD滤波器的基础上进行改进,提高了目标检测率,通过仿真实验验证了该方法的有效性。 相似文献