首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以人血清白蛋白溶液模拟腹水,采用聚砜中空纤维膜进行滤浓缩,实验考虑了不同截留相对分子质量膜的污染情况及膜清洗方法,并将优选出的实验条件用于腹水浓缩实验。结果表明,由于腹水中多种蛋白质的存在,造成膜的吸附污染较严重;用一般的化学清洗法清洗后通量可以恢复80%。  相似文献   

2.
糖蜜酒精废液超滤处理中膜的污染程度直接关系到膜的通量与使用寿命。本文对超滤法处理糖蜜酒精废液过程中清洗方法进行了研究。试验表明,保持清洗剂40℃温度下,先用反渗透水清洗30 min,再依次用0.2%NaClO溶液清洗30 min,0.2%HNO3清洗30 min,能够较好的降低该废液超滤处理中膜的污染,膜通量率可恢复到91.7%。  相似文献   

3.
大豆蛋白废水超滤中化学清洗技术研究   总被引:2,自引:1,他引:2  
对大豆蛋白废水超滤过程中膜的化学清洗技术进行了中试试验研究.对于污染后的改性聚砜超滤膜,碱性清洗剂的清洗效果要好于酸性清洗剂,0.5%NaOH溶液的纯水膜通量恢复率(WFR)优于其它的几种试剂,与最好的碱性蛋白酶清洗剂的清洗效果相近,在质量分数小于0.5%下,各种清洗剂的WFR随浓度增大而增大,大于0.5%以后,各种试剂的WFR变化不同,清洗时间的延长会导致WFR的增大,但60min后这种变化较小,能谱分析结果表明,化学清洗并不能完全洗去膜上的污染物,SEM微观结构分析显示,长期的化学清洗一定程度上改变了膜的结构,并且,化学清洗对膜的选择透过性造成了一定的影响,但清洗剂选择适当时,膜特性的改变并不严重。  相似文献   

4.
随着科学技术发展,压力式中空纤维膜超滤技术已广泛应用于现代新型水的预处理工艺中,超滤过滤的优点是运行中无相变、能耗低、工艺简单、分离效果好。维护好超滤膜的关键是预防超滤膜污染及适时进行化学清洗。  相似文献   

5.
凌剑  肖志宏 《科技信息》2009,(23):350-352
用膜法处理垃圾渗滤液,对膜的污染控制与清洗的研究表明:超滤预处理、调节pH值、冲洗、添加阻垢荆等方法都能够在一定程度上减轻无机纳滤膜的污染状况。其中,超滤预处理和调节pH值的影响大于冲洗和添加阻垢剂的影响。常温下,采用水洗十酸洗+碱洗+酸洗的综合化学清洗方法能使超滤膜通量恢复到新膜通量的97.8%;采用水洗+酸洗+酸洗的方法能使纳滤膜通量恢复到新膜通量的98.5%,并有良好的重复性。  相似文献   

6.
膜污染与清洗   总被引:11,自引:0,他引:11  
各种膜分离已在分离过程中成为最新的技术之一。膜体系的发展有很大的前景 ,但膜的污染问题仍是一个难题 ,它限制了膜的广泛应用。文章概述了膜污染的机理、预防措施及其清洗方法。并根据这些原则对微滤啤酒废水引起的膜污染的清洗方法进行了研究 ,通过比较试验 ,选择了恰当的清洗剂和清洗工艺 ,快速恢复了膜通量  相似文献   

7.
将聚醚砜平板膜组件用于一体式膜生物反应器(SMBR),进行了处理污水的研究.研究表明:SMBR对CODcr去除率高于90%;随着运行时间延长,膜污染越来越严重,对已污染的膜进行空曝气,水洗,水洗+碱洗,水洗+酸洗,水洗+酸洗+碱洗可使膜通量分别恢复至新膜通量的26%、46.3%、78%、70%和90%.  相似文献   

8.
根据膜通量衰减的过程曲线,把超滤膜通量的衰减过程分为2个阶段,分别对应于快速衰减期、缓慢衰减期,建立了膜通量J随处理时间t变化的半经验模型,采用该半经验模型,很好地拟合了大豆乳清液超滤过程中膜通量衰减的过程,分析了超滤膜材料、膜截留分子质量(MWCO)以及切向于膜面的水流速度等条件下膜通量衰减的影响因素,结果表明对每一个通量衰减阶段,造成膜通量衰减的原因均不是某一种因素的单独作用,阶段1内膜通量衰减的原因不仅仅是吸附污染,还涉及浓差极化和膜孔堵塞作用,阶段2内膜通量衰减的原因受膜材料、膜MWCO和进水流速等多种因素的影响而各不相同.  相似文献   

9.
何葆华 《甘肃科技》2014,(4):51-52,45
超滤膜分离技术在应用过程中,膜污染清洗是一个重要的环节。在超滤膜应用于葡萄酒生产的工艺研究中,重点试验研究了膜污染清洗工艺,试验结果表明,采用不同清洗剂组合清洗效果较为理想,清洗后的膜通量可恢复到99%。  相似文献   

10.
膜污染是膜分离技术在水处理应用中的突出问题.利用MXene(Ti3C2Tx)高导电性的优势,构建电辅助MXene膜分离体系,在膜上施加负电压,以缓解膜分离腐殖酸过程中的膜污染及对污染后的膜进行清洗再生,并探究了其作用机理.结果表明,膜分离腐殖酸过程中施加-2 V电压在稳定阶段的膜通量比不加电时增加了18.5%,在污染后的膜上施加-3 V电压能够高效实现膜清洗再生,-3 V处理10 min膜通量恢复率达到92%以上,且不对膜造成损伤.机理研究表明,低电压(-2 V槽压)下道南效应增强,使膜对腐殖酸的静电斥力增大,缓解膜污染,高电压(-3 V槽压)下增强的道南效应与析氢反应共同作用,大幅提升的静电斥力能够快速实现原位膜再生.  相似文献   

11.
研究了木聚糖碱抽提液超滤过程中膜面污染的形成和发展过程,以及膜面污染可逆性;分析了膜面清洗方法、反冲洗对溶剂透过率恢复的影响。结果表明:操作压力越低,进料速度越大,越有利于减轻膜面污染;膜面污染为部分可逆;4% NaOH溶液能有效地恢复溶剂透过率,而反冲洗只能部分地恢复溶剂透过率。  相似文献   

12.
采用粉末活性炭(PAC)-超滤(UF)一体化工艺处理微污染水,考察投炭量对浊度、UV254和CODMn去除效果和对膜污染的影响以及有机物去除效果随PAC停留时间的变化。研究结果表明:超滤膜出水浊度保持在0.100 NTU以下,且不受进水浊度以及PAC投加量的影响。在10,20和40 mg/L投加量下,随着PAC投加量增加,有机物去除率逐渐提高,但单位质量PAC有机物去除效果逐渐下降,10 mg/L PAC可以满足试验水质条件下经济性和出水水质的要求。PAC对有机物去除效果随停留时间增加而降低,较高PAC投加量下降幅度较小。PAC-UF工艺可以有效控制膜污染,次氯酸钠与酸、碱形成的复合药剂对跨膜压差恢复效果最佳。  相似文献   

13.
腐殖酸污染膜的超声波强化清洗   总被引:1,自引:0,他引:1  
中水回用过程中制约超滤有效运行的是有机物污染问题.以腐殖酸污染的聚醚砜(PES)超滤膜为研究对象,利用超声波清洗方法,在不同的清洗环境中对污染的超滤膜进行强化恢复研究.结果表明,与传统化学清洗工艺相比,超声波清洗可以显著提高清洗效果,缩短清洗时间.当超声波传播方向与膜垂直时,利用超滤出水作为清洗介质,在37℃水温下,清洗效果较好,通量可恢复至93%.  相似文献   

14.
曾益涛 《广东科技》2008,(12):65-66
本文是作者通过列举工程实例,具体介绍了其化学清洗的详细流程水处理超滤水装置运行情况和多次化学清洗的经验,总结和摸索出水处理超滤水装置有效的常规药品典型化学清洗方法,可供同行参考。  相似文献   

15.
中空纤维聚砜膜超滤技术纯化米醋的研究   总被引:1,自引:1,他引:1  
本研究采用中空纤维聚砜膜,对米醋进行超滤纯化.分别进行了单因素和正交实验,找到了不同操作压力下膜通量与时间的关系、不同进料液流量下膜通量随压力及随时间的关系,并进行了数学模拟.另外,还得出了优化的操作条件.对膜污染及膜通量的恢复问题也进行了研究,找到了合适的清洗剂及较好的清洗方式.实验结果为生产应用奠定了一定的理论基础,并具有一定指导作用.  相似文献   

16.
分析了超滤过程中大豆蛋白对膜污染的成因,并对不同清洗剂的清洗效果进行了比较。结果表明,采用单一清洗剂效果不显著,而用几种清洗剂交替清洗的方法能使膜通量恢复到95%以上。  相似文献   

17.
为了研究生物粉末活性炭与超滤组合工艺膜污染物质特性,在工艺稳定运行条件下,分别对受污染膜丝表面泥饼层、水洗后的受污染膜丝、生物粉末活性炭进行了红外光谱分析.结果显示,通过红外光谱分析,生物粉末活性炭可以有效的延缓膜表面泥饼层的形成,缓解膜污染;水洗后的受污染膜丝孔内有机污染物较少,而且是小分子有机污染物;还得出含有-OH伸缩振动基团和CO伸缩振动基团的污染物是造成膜污染的主要有机污染物质.  相似文献   

18.
以PVDF超滤膜为研究对象,通过对受污染膜丝经水洗、碱浸泡(次氯酸钠和氢氧化钠混合)、酸浸泡(柠檬酸)、纯水浸泡清洗流程及经水洗、碱浸泡(次氯酸钠)、酸浸泡(柠檬酸)、超声清洗、纯水浸泡清洗流程的比较,探讨PVDF超滤膜的清洗方法.结果显示:PVDF膜经氢氧化钠浸泡后膜丝颜色发生明显变化,而经水洗、碱浸泡(次氯酸钠)、...  相似文献   

19.
本文具体论述了电厂水处理超滤水装置的流程、运行情况和多次化学清洗的经验,总结和摸索出水处理超滤水装置有效的常规药品典型化学清洗方法,可供同行参考。  相似文献   

20.
利用粉末活性炭-超滤(PAC-UF)组合工艺处理污水厂二级出水中腐殖酸(humic acid,HA)溶液,主要考察在不同的PAC投加量工况下对膜通量的影响、膜污染阻力变化、Hermia经典过滤堵塞模型拟合和膜污染趋势分析情况。结果表明,PAC颗粒本身几乎不会影响膜通量的下降,处理腐殖酸类有机溶液的PAC最佳投加量为20 mg/L;腐殖酸导致的膜污染以不可逆膜污染为主,其与滤饼层污染模型的拟合度最好;将超滤阶段分为初期黏附阶段与后期黏聚阶段,初期阶段导致的膜通量下降更加剧烈,后期阶段形成的滤饼层有效的拦截有机物避免直接接触超滤膜。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号