首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
在自行构建的"H"型双室微生物燃料电池(MFC)中,以湖南省吉首市大田湾污水处理厂曝气池中的污泥为接种污泥,以可溶性淀粉和白糊精为底物,考察不同底物及其质量浓度对MFC获得稳定开路电压所需时间、启动时间、电动势、内阻及功率密度等性能的影响.实验结果显示,在同样的条件下,以白糊精为底物的MFC启动快、内阻小、功率密度较小,而以可溶性为底物的MFC启动慢、内阻大、功率密度大;底物质量浓度低于6g/L时,以可溶性淀粉为底物的MFC达到稳定开路电压的时间随质量浓度增大而增加,底物质量浓度低于8g/L时,以白糊精为底物的MFC达到稳定开路电压的时间随质量浓度增大而增加.由于底物抑制效应,质量浓度较高时,随着底物质量浓度的增加.MFC达到稳定开路电压所需的时间反而减少.  相似文献   

2.
降解苯的微生物燃料电池产电性能研究   总被引:2,自引:0,他引:2  
 通过构建填料型微生物燃料电池(microbial fuel cell,MFC),对葡萄糖、苯为单一燃料和葡萄糖+苯混合燃料条件下MFC的产电性能及苯的降解效果进行了研究。试验结果表明,1 000 Ω外电阻条件下,以1 500 mg/L葡萄糖作为单一燃料时,MFC可获得的最高功率密度为228 mW/m2(阳极),相应的体积功率密度为205 W/m3(按阳极室有效体积计算); 以1 000 mg/L苯作为单一燃料时,最高功率密度为95 mW/m2(阳极),体积功率密度为09 W/m3;以1 000 mg/L葡萄糖+600 mg/L苯为混合燃料时,最高功率密度为288 mW/m2 (阳极),相应的体积功率密度为259 W/m3。1 000 mg/L葡萄糖+600 mg/L苯混合燃料情况下,MFC在24 h内可将苯完全降解,产电周期结束时MFC的 COD去除率在95%以上。以1 500 mg/L葡萄糖和1 000 mg/L葡萄糖+600 mg/L苯分别作为燃料时,MFC可获得的库仑〖JP2〗效率分别为157%和23%。结果表明,MFC能够利用苯作为燃料,在实现高效降解的同时可稳定地向外输出电能,这为苯类难降解有机物的高效低耗处理提供了新的研究思路。  相似文献   

3.
考察了聚苯胺(PANI)修饰阴极对沉积型微生物燃料电池(SMFC)产电性能和有机质去除率的影响。衰减全反射红外光谱(ATR)表征证明修饰电极表面PANI为导电的质子掺杂状态。电化学阻抗谱(EIS)测试揭示,PANI修饰电极的欧姆内阻(R‰)和电荷转移内阻(R。)明显低于空白电极,且随着PANI负载量的增大逐渐减小。以PANI修饰阴极序批式运行沉积型微生物燃料电池(SMFC),可以显著提高SMFC的产电性能以及沉积物中有机质去除率。与空白阴极SMFC体系相比,PANI—110修饰阴极SMFC的最大功率密度增大了64倍,表观内阻减小了12倍,SCOD去除率由12.4%增大到40.3%。  相似文献   

4.
污水厌氧生化处理与微生物燃料电池的结合探讨   总被引:1,自引:0,他引:1  
文章阐述了厌氧生物处理法和微生物燃料电池的工作原理以及优缺点,从产能和净化的双重角度将两者进行创新性结合,并在此基础上,针对有细菌电池的产电速率和速度低的问题进行了初步研究,考虑了阴极板,即不同的电子接收金属对整个系统的产电效率的影响。  相似文献   

5.
以浮萍为生物质能原料,采用酸式热裂解进行预处理,考察了处理液在微生物燃料电池(MFC)中的产电性能.结果表明:浮萍热裂解最佳预处理条件为:反应温度160℃,反应时间80 min,草酸投加量3%(质量分数).该条件下每克浮萍的还原糖产量为0.272 g,浮萍固体消化率可达到55%.当采用稀释10倍的热裂解液时,MFC的最...  相似文献   

6.
以吉林省四平市某垃圾场渗滤液为燃料, 纯钛板为负载微生物阳极和阴极, 用盐桥转移电子方式组建双室微生物燃料电池(DCMFC). 研究阴极室溶液电子受体质量浓度、 pH值、 温度等因素对输出功率密度、 开路电压、 内阻等电池性能的影响, 并考察了对垃圾渗滤液的处理效果. 实验结果表明, 阴极溶液以1.0 g/L双氧水为电子受体, 在pH=2.5、 ρ(硫酸钠)=0.5 g/L、 温度约为30 ℃的最佳实验条件下, 该微生物燃料电池的输出功率密度达12.074 W/m2, 开路电压为1.13 V, 内阻为76.868 Ω. 经过连续30 d的运行, 垃圾渗滤液化学需氧量(COD)去除率达95%, 表明选择恰当的阴极室溶液能提高微生物燃料电池的产电性能.  相似文献   

7.
对比研究空气阴极单室与双室微生物燃料电池(MFC)在去除硫化物及产电性能。当硫化物浓度为100mg/L,共基质葡萄糖浓度为812 mg/L时,单室和双室MFC的最大开路电压分别达897.2 m V和821.7 m V,最大输出功率分别为340.0 m W/m~2和273.8 m W/m~2,库仑效率分别为5.6%和10.7%,单室MFC表现出更好的电能输出,而双室MFC的能量转化效率更高。单室MFC运行72小时后,含硫化物废水中的硫化物去除率为75.4%。含硫化物废水中的有机质也可以得到同步去除,TOC的去除率为17.8%。上述结果表明利用MFC去除硫化物并同步产电是可行的,阴极是系统的主要限制因素。  相似文献   

8.
利用PW12/rGO复合材料负载于碳布表面制得PW12/rGO修饰阳极并构建单室空气阴极微生物燃料电池(microbial fuel cells,MFC),考察了PW12/rGO修饰阳极对MFC产电和高氯酸盐(ClO4-)还原性能的影响,并通过对阳极表面形态及其电化学特性的分析,探讨了PW12/rGO修饰阳极改善MFC产电性能的机理.结果 表明,当ClO4-浓度为700 mg/L时,PW12/rGO修饰阳极MFC的最大输出电压和ClO4-平均去除速率分别为200.18 mV和1.15 kg/(m3·d),分别是空白阳极MFC的4.4倍和1.06倍;扫描电镜(SEM)表征显示,PW12/rGO修饰阳极表面附着的微生物量远高于空白阳极;Tafel曲线、循环伏安曲线(CV)和交流阻抗谱(EIS)测试表明,PW12/rGO修饰阳极较空白阳极具有更高的交换电流密度、CV电活性面积以及更低的电荷转移电阻.PW12/rGO修饰阳极提高了阳极电子产量和电子传递速率,进而改善了MFC的产电性能.  相似文献   

9.
pH值对猪粪废水微生物燃料电池产电性能的影响   总被引:1,自引:0,他引:1  
构建了以布阴极组为空气阴极的单室微生物燃料电池,并将其应用于猪粪废水的处理与产电.重点考察了阳极液pH值对猪粪废水处理和产电性能的影响.结果表明,阳极液pH=10时MFC的产电和废水处理性能最佳,输出功率密度达到2.10W/m3,与阳极液pH=6和pH=8时的电池相比,输出功率分别提高约2.7倍和1.9倍.同时,阳极液pH=10时,COD去除率和氨氮去除率也分别达到86.7%和92.8%,比阳极液pH=6和pH=8时MFC的COD去除率提高了约13.8%和6.7%;氨氮去除率提高了约5.3%和3.5%.本研究表明,调控阳极液pH值能够有效强化猪粪废水处理和产电,为猪粪废水资源化处理提供了一条新途径.  相似文献   

10.
〖JP〗石墨烯疏水性及层间-共轭极大地影响了其生物相容性和分散性,难以有效修饰电极. 文章通过将石墨烯与碳纳米管混合,利用二者之间的非共价结合,消除了石墨烯单一修饰电极的缺点,并通过浸渍法制备了石墨烯-碳纳米管复合碳纳米材料电极. 扫描电镜观察表明,石墨烯与碳纳米管被牢固地固定在碳毡电极表面,形成了复合均一层. 将复合电极用作微生物燃料电池(MFC)的阳极,〖JP+1〗显著改善了MFC的产电性能. 复合阳极的MFC的最大功率密度(760.7 mW/m2)比空白碳毡阳极MFC的(228.8 mW/m2)高2.36倍,因为复合电极显著降低了阳极的电子传递阻力,减轻了阳极极化,改善了阳极电化学性能. 复合碳纳米材料修饰阳极的电子传递阻抗(39.8 )比空白碳毡阳极的(248.7)低84%.〖JP〗  相似文献   

11.
通过微生物燃料电池(microbial fuel cell,MFC)与传统厌氧消化(conventional anaerobic digestion,CAD)的比较试验,考察了对高浓度葡萄糖和硫酸盐人工废水的处理效果.MFC在获得一定能量的同时(I=0.16mA,P=4.76mw/m2),有效去除水中有机物,去除率高于CAD.葡萄糖为碳源,初始TOC=2100mg/L,运行144h,MFC获得91.61%去除率,CAD获得58.85%去除率;初始NH3一N为500mg/L,MFC中去除率最高达92.61%,CAD达72.38%;MFC中对硫酸盐的利用率和CH4产生量都低于CAD;比较结果表明,MFC技术可提高处理高浓度有机废水的效果.  相似文献   

12.
为了研究和开发增压循环床燃烧装置,在一个床体内径为80mm,高为6m的增压循环床内对其流动及操作特性进行了冷态试验研究。本文发表了床料粒径、筛分对床内空隙率分布的影响以及压力对增压循环流化床运行特性影响的试验结果,并讨论了它们对煤在增压循环流化床中燃烧可能产生的影响。  相似文献   

13.
14.
提出了厌氧颗粒污泥流化床工艺(简称AGSFB).在成功培养出颗粒污泥的基础上,以葡萄糖为基质,全面探讨了AGSFB处理有机废水的运行效果、产气率、污泥表观产率系数及反应器的耐冲击性能等.结果表明,AGSFB反应器具有很高的处理效率.水力停留时间HRT为49h,进水化学需氧量CODcr=3240g/L,有机负荷为159kg/(m3·d)时,反应器的有机物去除率仍保持在756%以上.AGSFB对温度降低、负荷提高、短期的低pH值和有机酸冲击均表现出良好的耐受能力  相似文献   

15.
通过恒电位法一步将氧化石墨烯、过渡金属Co和聚吡咯(PPy)三者共固定于碳毡电极表面,制备了复合膜电极,采用循环伏安法、交流阻抗对复合电极进行了电化学测试,并将其用作微生物燃料电池(MFC)的阳极和阴极,考察了其对MFC产电性能的改善作用. 结果表明:碳毡电极表面经修饰后,在三者协同作用下碳毡电极的电容显著增大. 这种修饰有效增加了电极比表面积和导电性能,减小了电荷传递阻抗,提高了电极的电子传递效率. 同时,该电极具有良好的生物相容性及稳定性,使藻菌MFC产电功率增大了3.1倍,且内阻减小了76%.  相似文献   

16.
研究了中温条件下厌氧流化床(AFB)反应器处理有机废水的部分抗冲击性能。当生物膜形成并生长良好时,AFB反应器抗冲击负荷能力强。对环境温度变化不十分敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号