首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
《河南科学》2017,(3):432-436
对于高寒区隧道,列车运行产生活塞风会影响隧道内空气与衬砌围岩之间的对流换热,进而影响隧道结构的安全性和使用寿命.结合高寒地区隧道工程实例,运用动网格技术真实地模拟了列车进入隧道、在隧道中持续运行和驶出隧道的全过程,对列车以现行速度运行、快速运行、高速运行时在隧道内引起空气动力学效应进行了研究,分析了活塞风风速的变化规律,得到了列车头部进入隧道和列车尾部离开隧道的时间段内隧道内活塞风风速和列车速度之间的关系.结果表明,无论是列车头部刚驶入隧道时刻还是列车尾部离开隧道的时刻,隧道内的活塞风风速总是随着列车运行速度的增大而增大,为高寒地区高速铁路修建提供参考.  相似文献   

2.
地铁隧道火灾中,列车着火的可能性较大,目前的应急处置办法是尽量带火运行到前方车站进行救援.运用STAR-CCM+的滑移网格功能,研究着火列车以不同的速度行驶时,隧道内速度场的变化规律.结果表明:距离车头较近的位置,活塞风速大小不均匀;当离开车头大于3 m后,活塞风速分布区域均匀;当列车车速较大或在隧道内运行足够长的距离,列车前方活塞风速约为列车行驶速度的1/3.研究结果将为科学评估隧道列车火灾的安全风险和疏散能力提供参考.  相似文献   

3.
矿井提升容器在井筒中占据了部分井筒空间,升降运动时,产生活塞作用效应,提升容器周围的流场和压力场均发生变化,产生动态局部阻力.根据流体力学理论,分析了罐笼在井筒内升降过程中空气的速度变化情况,采用相对坐标法推导了在井筒风速影响下罐笼顺风、逆风和相会时的活塞风速数学计算模型.研究结果表明,井筒提升容器活塞效应的影响因素主要有提升容器的外形尺寸、井筒内的机械通风风速和阻塞比等.研究结论为研究由于矿井井筒提升容器活塞作用效应产生动态局部阻力提供了理论依据.图2,参11.  相似文献   

4.
针对隧道内活塞风会对安全门和广告灯箱等引起破坏的问题,开展了地铁单线无风井和有风井两种形式的隧道空气动力学特性分析,建立了隧道各断面之间的一维伯努利方程和流体连续性方程,研究了不同形式隧道下活塞风速的理论计算模型. 并使用SES软件建立其仿真模型对计算模型的结果进行验证, 重点研究了对活塞风速影响的主要因素.结果表明:隧道内活塞风速与列车速度、列车长度和列车外表面光洁度等成正比例关系,而活塞风井高度、断面面积和风井位置等参数对活塞风速影响不大.所提出的计算模型可用于实际工程中活塞风速的简便计算.  相似文献   

5.
隧道火灾中,列车着火的可能性较大,着火后的应急处置办法是尽量带火运行到前方车站.文中以向前行驶的隧道列车火灾为研究对象,应用槽道科特流、传热传质和燃烧反应动力学理论,结合缩尺火灾模型试验,研究了列车在着火后继续在隧道内行驶时,隧道列车环形空间内的回风风量、隧道内的活塞风效应及其对火灾燃烧特性的影响,给出了回风风量的表达式,建立了火灾热释放速率与列车运行速度的关系模型,得到了使得火灾强度维持在较低水平的列车合理运行速度——48 km/h.研究成果和方法可为隧道列车火灾的应急救援设计提供理论依据和指导.  相似文献   

6.
采用数值模拟方法,对列车在城际铁路隧道内运行过程中所产生的列车风变化过程进行分析,计算CRH2流线型列车在隧道内运行时,隧道内沿纵向不同位置列车风最大风速,进一步探讨隧道内列车风纵向和横向分布特性,并参考相关标准分析隧道内轨侧疏散通道、轨下疏散通道进行人员疏散时的安全性.结果表明:车头风速梯度很大,且在车头侧面空间出现风速转向,环隙空间内气流流动为典型的Couette湍流流动和Poiseuille湍流流动的叠加,车尾风速最大,对轨侧人员安全最为不利;CRH2流线型车以200km/h速度运行时,轨侧疏散通道最大风速17.2 m/s,轨下疏散通道口及通道内最大风速分别为15.2和9.5 m/s.按照16.9 m/s风速标准进行判断,人员可从轨下疏散通道进行疏散.  相似文献   

7.
高速铁路隧道火灾列车继续运行疏散模式CFD分析   总被引:2,自引:0,他引:2  
我国高速铁路铁路火灾疏散问题日益引起广泛关注。首先分析了隧道内列车火灾疏散模式及安全疏散准则,然后采用CFD(计算流体动力学)方法模拟了CRH(中国高速铁路)动车组在铁路隧道发生列车火灾时,采用继续运行疏散模式时温度场变化以及烟气扩散规律.计算结果表明:列车在隧道内继续运行疏散过程中,列车活塞风的作用主导了烟气的运动轨迹,烟气的逆流效应几乎不存在,上游车厢基本不受影响,下游车厢内的流场温度和烟气浓度随时间增加而增长,并且在火灾达到最大规模时会趋于稳定。在继续运行疏散过程中,火灾规模和列车运行速度对下游车厢烟气流场的分布有较大影响,是影响人员安全疏散的两个主要因素.  相似文献   

8.
为研究活塞风对矿井通风系统的影响,运用Fluent移动参考网格建立数值分析模型,分析电机车牵引矿车在矿井井巷中运动时的矿井活塞风效应。结果表明:列车行驶前方为增压减速区,区内压力随距离的增大而减小,风速随距离的增大而增大。列车行驶后方先后存在减压增速区和增压减速区,两区内风速均随距离的增大而减小,减压增速区内压力随距离的增大而增大,增压减速区内压力随距离的增大先后存在一个增压和减压区。列车行驶前方和后方,风速和压力平面影响面积均随距离的增大而增大。列车中前部矿车活塞风风速较大。矿车内尾部、底部活塞风效应较强。  相似文献   

9.
高塔内壁防腐设备工作时需在火电厂高塔内做高速上下往复运动,这一过程产生的活塞风可能导致设备的振动,对喷涂质量有重要的影响。为了研究风速和设备运行速度对活塞风的影响,文章根据Bernoulli原理推导设备在不同运行状态下活塞风风速的计算公式;采用Fluent软件模拟设备高速运行下的流体速度场及压力场分布。研究表明:设备速度一定的前提下,顺风运行时产生的活塞风风速随设备运行速度和风速差值的增大而增大,逆风运行时产生的活塞风风速随着风速的增大而增大;由于设备逆风运行时活塞风效应显著,设备在上行和下行时应分别采取不同的速度曲线;在风速一定时,轿厢运行速度越快,活塞风风速越高;设备在启动后加速4s时顶、底面压差达到最大值129.39Pa,设备尾部气流速度峰值同样达到最大值11.33m/s;阻塞比越大,活塞风效应越显著,在满足结构设计的前提下,设备尺寸选用3m×3m×5m是合理的。研究结果为提高喷涂质量提供了一定的理论依据和数值参考。  相似文献   

10.
目前高速列车隧道空气动力学模型实验系统主要用于分析隧道内压力波的变化规律,难以对空气动力学效应进行完整的分析.针对这一局限性,从科特流(Couette)理论出发,提出了一种新型实验系统即旋转式高速列车—隧道模型实验系统,介绍了该系统的可行性、结构、实验原理及其特点.分析表明:该新型实验系统结构简单、功能完善、成本低、实验重复性好,适用于进行高速列车通过隧道时产生压力瞬变、微气压波、列车活塞风、行车阻力和气动噪声等一系列空气动力学实验,并能测量隧道内和列车隧道环形空间的气流速度场,对研究高速列车隧道空气动力学问题有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号