首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
C Auffray  J Kuo  R DeMars  J L Strominger 《Nature》1983,304(5922):174-177
The major histocompatibility complex (MHC) in man, also called the HLA region, is located on the short arm of chromosome 6 and encodes antigens involved in immunological processes. The class II HLA antigens consist of two noncovalently associated polypeptide chains, one of molecular weight 34,000 (alpha) and the other of molecular weight 29,000 (beta). The extensive polymorphism of the beta chain(s) has allowed the genetic mapping of the corresponding beta gene(s) to the HLA-DR region. cDNA clones for the HLA-DR alpha chain have been used to map the non-polymorphic DR alpha-chain gene to chromosome 6 using mouse-human somatic cell hybrids. Similarly, the DR alpha-chain gene has been mapped to the short arm of chromosome 6 centromeric to the HLA-A, -B and -C loci by in situ hybridization experiments. We isolated a cDNA clone that is related to the DR alpha chain and encodes the class II antigen DC alpha chain. We describe here how this DC alpha clone was used to find two or three additional alpha-chain genes by cross-hybridization and how HLA-antigen loss mutants of a human lymphoblastoid cell line (LCL) were used to ascertain that these additional class II antigen alpha-chain genes are also located in the HLA region.  相似文献   

2.
The human HLA-D histocompatibility region encodes class II antigens each of which consists of two polypeptide chains (alpha and beta) inserted in the plasma membrane. These molecules are implicated in the regulation of the immune response but several human diseases are also found to be associated with certain HLA-DR antigens. The occurrence of insulin-dependent (type I) diabetes (IDDM) is strongly associated with HLA-DR3 and/or 4 (ref. 5). The class II antigens, however, show a marked genetic polymorphism associated with the beta-chains which seem, from hybridization studies, to be encoded by several genes. We have therefore used the beta-chain cDNA probe, pDR-beta-1 (refs 8, 10) to test whether there are differences in hybridization pattern between DNA from healthy individuals and diabetic patients, after digestion with restriction endonucleases. Among the HLA-DR 4 and 3/4 individuals, the IDDM patients showed an increased frequency of a PstI 18 kilobase (kb) fragment. A BamHI 3.7 kb fragment, frequent among controls (30-40%), was rarely detected in the IDDM patients (0-2%). These differences may be related to susceptibility to develop the disease.  相似文献   

3.
Short antigenic peptides bound in the groove of class I major histocompatibility complex molecules enable T cells to detect intracellular pathogens. It has been assumed that structural features of the class I molecule alone select which peptides are bound. It is now demonstrated that a complex polymorphism in one of the major histocompatibility complex-encoded putative peptide-transporter genes is associated with an altered spectrum of bound peptides.  相似文献   

4.
E Mellins  L Smith  B Arp  T Cotner  E Celis  D Pious 《Nature》1990,343(6253):71-74
Presentation of an exogenous protein antigen to helper (CD4+)T-lymphocytes by antigen presenting cells (APC) generally requires that the APCs degrade the native protein antigen into an immunogenic peptide, a process termed 'antigen processing', and that this peptide bind to a major histocompatibility complex (MHC) class II molecule. The complex of peptide and MHC molecule on the APC surface provides the stimulatory ligand for the alpha beta T cell receptor. The intracellular pathways and molecular mechanisms involved in the generation of the peptide-MHC complex are not well understood. Here, we describe several mutant APCs which are altered in their ability to present native exogenous protein antigens but effectively present immunogenic peptides derived from these proteins. The lesions in these mutants are not in the class II structural genes, but they affect the conformation of mature class II dimers.  相似文献   

5.
V Lotteau  L Teyton  D Burroughs  D Charron 《Nature》1987,329(6137):339-341
Human major histocompatibility complex (MHC) class II molecules are heterodimeric glycoproteins composed of non-covalently associated alpha and beta chains. Only isotype-matched alpha-beta associations have been described in man; these can occur either by cis- or trans-complementation (HLA-DR, DQ, DP). Here evidence is provided for the existence of a new type of hybrid molecule (DR alpha-DQ beta) arising by mixed-isotype pairing in human B-cell lines. Class II isotype-mismatched heterodimers have been recently reported in the mouse after transfection of class II genes, and our data demonstrate that such interisotypic pairing can occur in untransfected cells. This crosspairing greatly enhances the repertoire of the class II antigens that regulate immune responses and leads us to reconsider the HLA-disease association.  相似文献   

6.
A stretch of 200 kilobases (kb) of DNA from the I region of the mouse major histocompatibility complex has been cloned and characterized. It contains the genes for the biochemically defined class II proteins E alpha, E beta and A beta. DNA blot analyses suggest that the I region may contain only 6-8 class II genes. Correlation of our molecular map with the genetic map of the I region confines two of the five I subregions, I-J and I-B, to less than 3.4 kb of DNA at the 3' end of the E beta gene where a hotspot for recombination has been observed. Indeed, the I-A and I-E subregions may be contiguous. If so, the I-B and I-J subregions are not encoded in the I region between the I-A and I-E subregions.  相似文献   

7.
R N Germain  M A Norcross  D H Margulies 《Nature》1983,306(5939):190-194
The activation of T helper lymphocytes involves the recognition of class II major histocompatibility complex antigens, which are dimeric glycoproteins (of subunit composition A alpha A beta or E alpha E beta) expressed on the surfaces of macrophages and B lymphocytes. One approach to understanding the relationship between the structure of these antigens and their functions in the immune response is to clone the genes that encode them, to obtain functional expression of the cloned genes transfected into an appropriate cell line, and then to see how those functions are affected in variant genes generated in vitro. We report here the expression in Iad-bearing B cells of an Ak beta gene, which confers on the transfected cells the capacity for both allostimulation and antigen-dependent activation of an I-Ak-restricted T-cell clone.  相似文献   

8.
A potential donor gene for the bm1 gene conversion event in the C57BL mouse   总被引:1,自引:0,他引:1  
The mammalian major histocompatibility complex (MHC; H-2 complex in mouse) is a large multigene complex which encodes cell-surface antigens involved in the cellular immune response to foreign antigens. Class I polypeptides expressed at the H-2K and H-2D loci of numerous mouse strains exhibit an unusually high degree of genetic polymorphism, which is assumed to be related to their function as primary recognition elements in the immune response. We suggested that this H-2 polymorphism may arise by gene conversion-like events between non-allelic class I genes. This is supported by our recent comparison of the DNA sequences of the normal H-2Kb gene sequence, from the C57BL/10 mouse, and a mutant form of this gene called H-2Kbm1: the mutant allele differs from the H-2Kb gene in seven bases out of a region of 13 bases in exon 3 of the class I gene (which encodes alpha 2 (C1) the second highly polymorphic protein domain), suggesting that this region of new sequence had been introduced into the H-2Kb sequence following unequal pairing of two class I genes in the genome of the C57BL mouse. Schulze et al. have obtained similar results. Here we report work identifying a potential donor gene in our library of 26 class I genes cloned from the C57BL/10 mouse.  相似文献   

9.
R N Germain  H Quill 《Nature》1986,320(6057):72-75
Class II (Ia) major histocompatibility complex (MHC) molecules are heterodimeric integral membrane proteins composed of non-covalently linked alpha and beta glycoprotein chains. Studies of both normal cells and L-cell transfectants have shown that neither alpha- nor beta-chains are found on the cell surface alone, and that alpha beta dimers are required for membrane expression. In both mouse and man, several distinct non-allelic alpha and beta genes exist. Analysis of Ia molecules by immunoprecipitation and two-dimensional gel electrophoresis has demonstrated apparently selective association of particular pairs of the various alpha- and beta-chains to form the expressed class II isotypes I-A and I-E (mouse) or DQ, DP and DR (human). Because the various alpha- or beta-chains encoded by distinct loci exist in many allelic forms within a species, such specific pairing suggests a special role for isotypically conserved regions of each chain in the association process. In attempting to localize such putative assembly-controlling regions using the technique of DNA-mediated gene transfer, various combinations of murine alpha and beta genes were introduced into L-cells. Here we report the unexpected observation, following transfection, of mixed-isotype (Ad beta Ea/k alpha) molecules on the L-cell membrane and document that the formation of this pair is strongly influenced by allelic polymorphism of the A beta chain.  相似文献   

10.
A Winoto  J L Urban  N C Lan  J Goverman  L Hood  D Hansburg 《Nature》1986,324(6098):679-682
The T-cell receptor is a cell surface heterodimer consisting of an alpha and a beta chain that binds foreign antigen in the context of a cell surface molecule encoded by the major histocompatibility complex (MHC), thus restricting the T-cell response to the surface of antigen presenting cells. The variable (V) domain of the receptor binds antigen and MHC molecules and is composed of distinct regions encoded by separate gene elements--variable (V alpha and V beta), diversity (D beta) and joining (J alpha and J beta)--rearranged and joined during T-cell differentiation to generate contiguous V alpha and V beta genes. T-helper cells, which facilitate T and B cell responses, bind antigen in the context of a class II MHC molecule. The helper T-cell response to cytochrome c in mice is a well-defined model for studying the T-cell response to restricted antigen and MHC determinants. Only mice expressing certain class II molecules can respond to this antigen (Ek alpha Ek beta, Ek alpha Eb beta, Ev alpha Ev beta and Ek alpha Es beta). Most T cells appear to recognize the C-terminal peptide of cytochrome c (residues 81-104 in pigeon cytochrome c). We have raised helper T cells to pigeon cytochrome c or its C-terminal peptide analogues in four different MHC congenic strains of mice encoding each of the four responding class II molecules. We have isolated and sequenced seven V alpha genes and six V beta genes and analysed seven additional helper T cells by Northern blot to compare the structure of the V alpha and V beta gene segments with their antigen and MHC specificities. We have added five examples taken from the literature. These data show that a single V alpha gene segment is responsible for a large part of the response of mice to cytochrome c but there is no simple correlation of MHC restriction with gene segment use.  相似文献   

11.
K Saizawa  J Rojo  C A Janeway 《Nature》1987,328(6127):260-263
CD4 is a molecule expressed on the surface of T lymphocytes which recognize foreign protein antigens in the context of class II major histocompatibility complex (MHC) molecules. Recognition of antigen:class II MHC complexes by CD4+ T cells can be inhibited by anti-CD4 (ref. 3). Nevertheless, specific recognition of the antigen:Ia complex is clearly a function of the T-cell receptor, which is composed of CD3 and the variable polypeptides alpha and beta. Thus, it has been proposed that CD4 serves an accessory function in the interaction of CD4+ T cells and Ia-bearing antigen-presenting cells by binding to non-polymorphic portions of class II MHC molecules and stabilizing the cell interaction. Based on our observation that anti-CD4 could inhibit activation of a cloned line of CD4+ T cells by antibodies directed at a particular epitope on the variable region of the T-cell receptor, we have recently proposed that CD4 is actually part of the T-cell antigen recognition complex, physically associated with CD3:alpha:beta. But numerous studies showing that CD3 and CD4 are not stably associated on the T-cell surface would appear to contradict this model. Here we show that anti-T-cell-receptor antibodies can co-modulate expression of the T-cell receptor and CD4, and that the monovalent Fab fragment of such an anti-T-cell-receptor antibody can, in conjunction with bivalent anti-CD4 antibody, generate an activating signal for the T cell. These findings provide further evidence for a physical association of the T-cell receptor complex and CD4.  相似文献   

12.
A large case-control study of malaria in West African children shows that a human leucocyte class I antigen (HLA-Bw53) and an HLA class II haplotype (DRB1*1302-DQB1*0501), common in West Africans but rare in other racial groups, are independently associated with protection from severe malaria. In this population they account for as great a reduction in disease incidence as the sickle-cell haemoglobin variant. These data support the hypothesis that the extraordinary polymorphism of major histocompatibility complex genes has evolved primarily through natural selection by infectious pathogens.  相似文献   

13.
Class II (or Ia) antigens are highly polymorphic surface molecules which are essential for the cellular interactions involved in the immune response. In man, these antigens are encoded by a complex multigene family which is located in the major histocompatibility complex (MHC) and which comprises up to 12 distinct alpha- and beta-chain genes, coding for the HLA-DR, -DQ and -DP antigens. One form of congenital severe combined immunodeficiency (SCID) in man, which is generally lethal, is characterized by an absence of HLA-DR histocompatibility antigens on peripheral blood lymphocytes (HLA class II-deficient SCID). In these patients, as reported here, we have observed an absence of messenger RNA for the alpha- and beta-chains of HLA-DR, -DQ and -DP, indicating a global defect in the expression of all class II genes. Moreover, the lack of expression of HLA class II mRNAs could not be corrected by gamma-interferon, an inducer of class II gene expression in normal cells. Family studies have established that the genetic defect does not segregate with the MHC. We conclude, therefore, that the expression of the entire family of class II genes is normally controlled by a trans-acting class II regulatory gene which is unlinked to the MHC and which is affected in the patients. This gene controls a function or a product necessary for the action of gamma-interferon on class II genes.  相似文献   

14.
MHC polymorphism pre-dating speciation   总被引:24,自引:0,他引:24  
F Figueroa  E Günther  J Klein 《Nature》1988,335(6187):265-267
Two features distinguish the polymorphism of the major histocompatibility complex (MHC) loci from that of other loci: its high diversity and the large genetic distance between MHC alleles. More than 100 alleles exist in natural populations in the mouse at each of the functional class I and class II alleles, all alleles occurring at frequencies that cannot be explained by recurrent mutations. Some of the alleles differ by approximately 70 nucleotides in the coding region alone and some of the products of the allelic genes differ by more than 50 amino acids. It has generally been assumed that these differences accumulated after species inception. Here, we present evidence for an alternative explanation of the origin of MHC polymorphism: a large part of the MHC polymorphism pre-dates speciation and is passed on from species to species. We describe allelic differences that must have arisen before the separation of mice and rats from a common ancestor more than 10 million years ago.  相似文献   

15.
Structural and evolutionary analysis of HLA-D-region products   总被引:4,自引:0,他引:4  
The major histocompatibility complex (MHC)--HLA in man and H-2 in mouse--encodes two classes of cell-surface antigens involved in the immune response. The amino acid sequences have been determined for a number of these molecules. Class I antigens, typified by the HLA-ABC antigens, are composed of a 43,000-molecular weight (MW) glycosylated transmembrane polypeptide with three external domains (alpha 1, alpha 2 and alpha 3), of which the one nearest the membrane (alpha 3) is associated with a 12,000-MW nonglycosylated polypeptide, beta 2-microglobulin. The HLA-D-region or class II antigens, DR, DC and SB, are composed of two glycosylated transmembrane polypeptides, of MWs 34,000 (alpha-chain) and 28,000 (beta-chain). Both chains have two external domains which presumably associate with each other, alpha 2, beta 2 being membrane proximal and alpha 1, beta 1 N-terminal and membrane distal. All four membrane-proximal domains (class I alpha 3, beta 2-microglobulin, class II alpha 2 and beta 2) have amino acid sequences that show significant similarities with immunoglobulin constant-region domains. This, together with the similarly placed internal disulphide bonds, suggests they might have an immunoglobulin-like structure (Fig. 1). We have now used computer graphics techniques to predict a detailed three-dimensional structure for the membrane-proximal domains of the class II antigens (alpha 2 and beta 2) based on the known coordinates of immunoglobulin constant domains (Fig. 2). The transmembrane regions of class II antigens have been modelled as two alpha-helices packed together. The proposed structure accounts for conservation of amino acids and leads to evolutionary predictions.  相似文献   

16.
H Nishimoto  H Kikutani  K Yamamura  T Kishimoto 《Nature》1987,328(6129):432-434
The NOD (non-obese diabetic) mouse spontaneously develops insulin-dependent diabetes mellitus (IDDM) characterized by autoimmune insulitis, involving lymphocytic infiltration around and into the islets followed by pancreatic beta (beta) cell destruction, similar to human IDDM. Genetic analysis in breeding studies between NOD and C57BL/6 mice has demonstrated that two recessive genes on independent chromosomes contribute to the development of insulitis. One of the two recessive diabetogenic genes was found to be linked to the major histocompatibility complex (MHC). This is of interest, because the NOD strain has a unique class II MHC: it does not express I-E molecules as no messenger RNA for the alpha-chain of I-E is visible in Northern blot analysis; I-A molecules are not detected with any available monoclonal antibodies or by allo-reactive or autoreactive T-cell clones, although their expression is demonstrated with a conventional antiserum to Ia antigens. To examine whether the unusual expression of class II MHC molecules may be responsible for the development of autoimmune insulitis, we attempted to express I-E molecules in NOD mice selectively, without introducing other genes on chromosome 17 by using I-E-expressing C57BL/6 (B6(E alpha d)) transgenic mice. We report here that the expression of I-E molecules in NOD mice can prevent the development of autoimmune insulitis.  相似文献   

17.
S Wu  T L Saunders  F H Bach 《Nature》1986,324(6098):676-679
Class II molecules encoded by the human major histocompatibility complex (MHC) are involved in regulating T-cell response to antigens. The mechanisms for generating polymorphism in products of the MHC have been studied extensively for both the murine H-2 and the human HLA complex. Such studies indicate that point mutations plus selection have a major role in the generation of polymorphisms of class I and class II MHC genes. However, a non-reciprocal gene conversion mechanism has been proposed to explain several examples of clustered sequence variation in MHC genes. In all these examples, the proposed gene conversion event is unidirectional; that is, one of the two interacting genes acts as sequence donor and the other as sequence recipient. No examples of potential reciprocal genetic exchange (as occurs in the fungal system), in which the two interacting genes act as both donor and recipient of gene fragments, have been found in the MHC system or in other multigene families of higher organisms. We sequenced two different HLA-DR beta complementary DNAs from each of two different cells all expressing the same serologically defined determinant (DR2) but different T-cell-recognized (Dw) specificities (Dw12 and MN2). Sequence comparisons of these four cDNA clones (and two DR beta amino-acid sequences from the DR2-Dw2 subtype) suggest that new coding sequences for DR beta molecules in the DR2 haplotypes are potentially generated by reciprocal intergenic exchange.  相似文献   

18.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

19.
The origin of MHC class II gene polymorphism within the genus Mus   总被引:12,自引:0,他引:12  
The I region of the major histocompatibility complex (MHC) of the mouse (H-2) contains a tightly-linked cluster of highly polymorphic genes (class II MHC genes) which control immune responsiveness. Speculation on the origin of this polymorphism, which is believed to be essential for the function of the class II proteins in immune responses to disease, has given rise to two hypotheses. The first is that hypermutational mechanisms (gene conversion or segmental exchange) promote the rapid generation of diversity in MHC genes. The alternative is that polymorphism has arisen from the steady accumulation of mutations over long evolutionary periods, and multiple specific alleles have survived speciation (trans-species evolution). We have looked for evidence of 'segmental exchange' and/or 'trans-species evolution' in the class II genes of the genus Mus by molecular genetic analysis of I-A beta alleles. The results indicate that greater than 90% (28 out of 31) of the alleles examined can be organized into two evolutionary groups both on the basis of restriction site polymorphisms and by the presence or absence of a short interspersed nucleotide element (SINE). Using this SINE sequence as an evolutionary tag, we demonstrate that I-A beta alleles in these two evolutionary groups diverged at least three million years ago and have survived the speciation events leading to several modern Mus species. Nucleotide sequence comparisons of eight Mus m. domesticus I-A beta alleles representing all three evolutionary groups indicate that most of the divergence in exon sequences is due to the steady accumulation of mutations that are maintained independently in the different alleles. But segmental exchanges between alleles from different evolutionary groups have also played a role in the diversification of beta 1 exons.  相似文献   

20.
R L Modlin  M B Brenner  M S Krangel  A D Duby  B R Bloom 《Nature》1987,329(6139):541-545
Cells which can suppress the immune response to an antigen (TS cells) appear to be essential for regulation of the immune system. But the characterization of the TS lineage has not been extensive and many are sceptical of studies using uncloned or hybrid T-cell lines. The nature of the antigen receptor on these cells is unclear. T cells of the helper or cytotoxic lineages appear to recognize their targets using the T-cell receptor (TCR) alpha beta-CD3 complex. TCR beta-gene rearrangements are also found in some murine and human suppressor cell lines but others have been shown not to rearrange or express the beta-chain or alpha-chain genes. We previously established TS clones derived from lepromatous leprosy patients which carry the CD8 antigen and recognize antigen in the context of the major histocompatibility complex (MHC) class II molecules in vitro. We here report the characterization of additional MHC-restricted TS clones which rearrange TCR beta genes, express messenger RNA for the alpha and beta chains of the TCR and express clonally unique CD3-associated TCR alpha beta structures on their cell surface but do not express the gamma chain of the gamma delta TCR on the cell surface. We conclude that antigen recognition by at least some human CD8+ suppressor cells is likely to be mediated by TCR alpha beta heterodimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号