首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Multi-scale ordering of materials is central for the application of molecular systems in macroscopic devices. Self-assembly based on selective control of non-covalent interactions provides a powerful tool for the creation of structured systems at a molecular level, and application of this methodology to macromolecular systems provides a means for extending such structures to macroscopic length scale. Monolayer-functionalized nanoparticles can be made with a wide variety of metallic and non-metallic cores, providing a versatile building block for such approaches. Here we present a polymer-mediated 'bricks and mortar' strategy for the ordering of nanoparticles into structured assemblies. This methodology allows monolayer-protected gold particles to self-assemble into structured aggregates while thermally controlling their size and morphology. Using 2-nm gold particles as building blocks, we show that spherical aggregates of size 97 +/- 17 nm can be produced at 23 degrees C, and that 0.5-1 microm spherical assemblies with (5-40) x 10(5) individual subunits form at -20 degrees C. Intriguingly, extended networks of approximately 50-nm subunits are formed at 10 degrees C, illustrating the potential of our approach for the formation of diverse structural motifs such as wires and rods. These findings demonstrate that the assembly process provides control over the resulting aggregates, while the modularity of the 'bricks and mortar' approach allows combinatorial control over the constituents, providing a versatile route to new materials systems.  相似文献   

2.
Chung WJ  Oh JW  Kwak K  Lee BY  Meyer J  Wang E  Hexemer A  Lee SW 《Nature》2011,478(7369):364-368
In nature, helical macromolecules such as collagen, chitin and cellulose are critical to the morphogenesis and functionality of various hierarchically structured materials. During tissue formation, these chiral macromolecules are secreted and undergo self-templating assembly, a process whereby multiple kinetic factors influence the assembly of the incoming building blocks to produce non-equilibrium structures. A single macromolecule can form diverse functional structures when self-templated under different conditions. Collagen type I, for instance, forms transparent corneal tissues from orthogonally aligned nematic fibres, distinctively coloured skin tissues from cholesteric phase fibre bundles, and mineralized tissues from hierarchically organized fibres. Nature's self-templated materials surpass the functional and structural complexity achievable by current top-down and bottom-up fabrication methods. However, self-templating has not been thoroughly explored for engineering synthetic materials. Here we demonstrate the biomimetic, self-templating assembly of chiral colloidal particles (M13 phage) into functional materials. A single-step process produces long-range-ordered, supramolecular films showing multiple levels of hierarchical organization and helical twist. Three distinct supramolecular structures are created by this approach: nematic orthogonal twists, cholesteric helical ribbons and smectic helicolidal nanofilaments. Both chiral liquid crystalline phase transitions and competing interfacial forces at the interface are found to be critical factors in determining the morphology of the templated structures during assembly. The resulting materials show distinctive optical and photonic properties, functioning as chiral reflector/filters and structural colour matrices. In addition, M13 phages with genetically incorporated bioactive peptide ligands direct both soft and hard tissue growth in a hierarchically organized manner. Our assembly approach provides insight into the complexities of hierarchical assembly in nature and could be expanded to other chiral molecules to engineer sophisticated functional helical-twisted structures.  相似文献   

3.
Synthesis of carbon 'onions' in water.   总被引:16,自引:0,他引:16  
N Sano  H Wang  M Chhowalla  I Alexandrou  G A Amaratunga 《Nature》2001,414(6863):506-507
The fabrication of carbon nanomaterials usually calls for expensive vacuum systems to generate plasmas and yields are disappointingly low. Here we describe a simple method for producing high-quality spherical carbon nano-'onions' in large quantities without the use of vacuum equipment. The nanoparticles, which have C60 cores surrounded by onion-like nested particles, are generated by an arc discharge between two graphite electrodes submerged in water. This technique is economical and environmentally benign, and produces uncontaminated nanoparticles which may be useful in many applications.  相似文献   

4.
Photonic bandgap structures use the principle of interference to reflect radiation. Reflection from photonic bandgap structures has been demonstrated in one, two and three dimensions and various applications have been proposed. Early work in hollow-core photonic bandgap fibre technology used a hexagonal structure surrounding the air core; this fibre was the first demonstration of light guided inside an air core of a photonic bandgap fibre. The potential benefits of guiding light in air derive from lower Rayleigh scattering, lower nonlinearity and lower transmission loss compared to conventional waveguides. In addition, these fibres offer a new platform for studying nonlinear optics in gases. Owing largely to challenges in fabrication, the early air-core fibres were only available in short lengths, and so systematic studies of loss were not possible. More recently, longer lengths of fibre have become available with reported losses of 1,000 dB km(-1). We report here the fabrication and characterization of long lengths of low attenuation photonic bandgap fibre. Attenuation of less than 30 dB km(-1) over a wide transmission window is observed with minimum loss of 13 dB km(-1) at 1,500 nm, measured on 100 m of fibre. Coupling between surface and core modes of the structure is identified as an important contributor to transmission loss in hollow-core photonic bandgap fibres.  相似文献   

5.
Striemer CC  Gaborski TR  McGrath JL  Fauchet PM 《Nature》2007,445(7129):749-753
Commercial ultrafiltration and dialysis membranes have broad pore size distributions and are over 1,000 times thicker than the molecules they are designed to separate, leading to poor size cut-off properties, filtrate loss within the membranes, and low transport rates. Nanofabricated membranes have great potential in molecular separation applications by offering more precise structural control, yet transport is also limited by micrometre-scale thicknesses. This limitation can be addressed by a new class of ultrathin nanostructured membranes where the membrane is roughly as thick (approximately 10 nm) as the molecules being separated, but membrane fragility and complex fabrication have prevented the use of ultrathin membranes for molecular separations. Here we report the development of an ultrathin porous nanocrystalline silicon (pnc-Si) membrane using straightforward silicon fabrication techniques that provide control over average pore sizes from approximately 5 nm to 25 nm. Our pnc-Si membranes can retain proteins while permitting the transport of small molecules at rates an order of magnitude faster than existing materials, separate differently sized proteins under physiological conditions, and separate similarly sized molecules carrying different charges. Despite being only 15 nm thick, pnc-Si membranes that are free-standing over 40,000 microm2 can support a full atmosphere of differential pressure without plastic deformation or fracture. By providing efficient, low-loss macromolecule separations, pnc-Si membranes are expected to enable a variety of new devices, including membrane-based chromatography systems and both analytical and preparative microfluidic systems that require highly efficient separations.  相似文献   

6.
TiO2微粒子的制备   总被引:1,自引:0,他引:1  
实验以Ti(SO4)2为原料,在水和正丙醇混合溶剂中制备TiO2粒子,较为系统地研究了制备条件(反应物浓度、溶剂、空间分散剂、反应时间、温度等)对产物粒子颗粒大小的影响,采用TEM、X-射线衍射等技术对所得产品性能进行了表征。实验结果表明,制得的TiO2水合粒子为均匀的球形粒子,经热处理后的粉体为锐钛矿型。  相似文献   

7.
Nanoscale or colloidal particles are important in many realms of science and technology. They can dramatically change the properties of materials, imparting solid-like behaviour to a wide variety of complex fluids. This behaviour arises when particles aggregate to form mesoscopic clusters and networks. The essential component leading to aggregation is an interparticle attraction, which can be generated by many physical and chemical mechanisms. In the limit of irreversible aggregation, infinitely strong interparticle bonds lead to diffusion-limited cluster aggregation (DLCA). This is understood as a purely kinetic phenomenon that can form solid-like gels at arbitrarily low particle volume fraction. Far more important technologically are systems with weaker attractions, where gel formation requires higher volume fractions. Numerous scenarios for gelation have been proposed, including DLCA, kinetic or dynamic arrest, phase separation, percolation and jamming. No consensus has emerged and, despite its ubiquity and significance, gelation is far from understood-even the location of the gelation phase boundary is not agreed on. Here we report experiments showing that gelation of spherical particles with isotropic, short-range attractions is initiated by spinodal decomposition; this thermodynamic instability triggers the formation of density fluctuations, leading to spanning clusters that dynamically arrest to create a gel. This simple picture of gelation does not depend on microscopic system-specific details, and should thus apply broadly to any particle system with short-range attractions. Our results suggest that gelation-often considered a purely kinetic phenomenon-is in fact a direct consequence of equilibrium liquid-gas phase separation. Without exception, we observe gelation in all of our samples predicted by theory and simulation to phase-separate; this suggests that it is phase separation, not percolation, that corresponds to gelation in models for attractive spheres.  相似文献   

8.
金属纳米粉材料的研制   总被引:4,自引:1,他引:4  
用氢等离子体电弧反应法生成Al,Fe,Cu和Pb的纳米粉·对其纳米颗粒的形貌特征、成分、晶体结构和粒径等进行了实际测定·结果表明,均为单质晶体;Al的粒径分布较宽,在10~138nm左右,平均粒径75nm·Fe,Cu,Pb平均粒径分别是56nm,81nm,77nm·除α Fe为bcc结构外,其余3种均为fcc结构·同样的进氧量,进氧的快慢对纳米粉氧含量多少影响很大·如钝化6h的Al纳米粉,其氧的质量分数为5 9%左右,而钝化2h的Al纳米粉氧的质量分数为11 3%左右·Al纳米粉的X射线衍射结果与其余的不同,由于氧的溶入,使衍射峰发生分裂,虽然结构没变,但有部分粉末的点阵常数增大了0 0036...  相似文献   

9.
Matter structured on a length scale comparable to or smaller than the wavelength of light can exhibit unusual optical properties. Particularly promising components for such materials are metal nanostructures, where structural alterations provide a straightforward means of tailoring their surface plasmon resonances and hence their interaction with light. But the top-down fabrication of plasmonic materials with controlled optical responses in the visible spectral range remains challenging, because lithographic methods are limited in resolution and in their ability to generate genuinely three-dimensional architectures. Molecular self-assembly provides an alternative bottom-up fabrication route not restricted by these limitations, and DNA- and peptide-directed assembly have proved to be viable methods for the controlled arrangement of metal nanoparticles in complex and also chiral geometries. Here we show that DNA origami enables the high-yield production of plasmonic structures that contain nanoparticles arranged in nanometre-scale helices. We find, in agreement with theoretical predictions, that the structures in solution exhibit defined circular dichroism and optical rotatory dispersion effects at visible wavelengths that originate from the collective plasmon-plasmon interactions of the nanoparticles positioned with an accuracy better than two nanometres. Circular dichroism effects in the visible part of the spectrum have been achieved by exploiting the chiral morphology of organic molecules and the plasmonic properties of nanoparticles, or even without precise control over the spatial configuration of the nanoparticles. In contrast, the optical response of our nanoparticle assemblies is rationally designed and tunable in handedness, colour and intensity-in accordance with our theoretical model.  相似文献   

10.
The combination of conductors, semiconductors and insulators with well-defined geometries and at prescribed length scales, while forming intimate interfaces, is essential in most functional electronic and optoelectronic devices. These are typically produced using a variety of elaborate wafer-based processes, which allow for small features, but are restricted to planar geometries and limited coverage area. In contrast, the technique of fibre drawing from a preformed reel or tube is simpler and yields extended lengths of highly uniform fibres with well-controlled geometries and good optical transport characteristics. So far, this technique has been restricted to particular materials and larger features. Here we report on the design, fabrication and characterization of fibres made of conducting, semiconducting and insulating materials in intimate contact and in a variety of geometries. We demonstrate that this approach can be used to construct a tunable fibre photodetector comprising an amorphous semiconductor core contacted by metallic microwires, and surrounded by a cylindrical-shell resonant optical cavity. Such a fibre is sensitive to illumination along its entire length (tens of meters), thus forming a photodetecting element of dimensionality one. We also construct a grid of such fibres that can identify the location of an illumination point. The advantage of this type of photodetector array is that it needs a number of elements of only order N, in contrast to the conventional order N2 for detector arrays made of photodetecting elements of dimensionality zero.  相似文献   

11.
由铁电纳米颗粒和介电质基体组成的复合材料具有很多功能特性,这些特性可广泛用于新型电子和能量收集装置.然而,铁电颗粒的形状、尺寸和在介电质基体中的取向对这些功能的影响还没有被研究清楚.利用一种中尺度建模方法,模拟了具有极性、弹性和热自由度的铁电纳米复合材料的性质,以及这些性质对尺寸、形状和取向的依赖性.基于时间依赖的朗道...  相似文献   

12.
Barth JV  Costantini G  Kern K 《Nature》2005,437(7059):671-679
The fabrication methods of the microelectronics industry have been refined to produce ever smaller devices, but will soon reach their fundamental limits. A promising alternative route to even smaller functional systems with nanometre dimensions is the autonomous ordering and assembly of atoms and molecules on atomically well-defined surfaces. This approach combines ease of fabrication with exquisite control over the shape, composition and mesoscale organization of the surface structures formed. Once the mechanisms controlling the self-ordering phenomena are fully understood, the self-assembly and growth processes can be steered to create a wide range of surface nanostructures from metallic, semiconducting and molecular materials.  相似文献   

13.
通过高应力下的三轴剪切试验,分析了堆石料在不同孔隙率、级配及应力状态下的颗粒破碎情况,研究峰值点处颗粒破碎与其剪胀性、软化性及强度特性的关系。结果表明:颗粒破碎以60~20 mm粒径含量降低、小于5 mm粒径含量增加为主,20~5 mm中等粒径颗粒含量变化较小;颗粒破碎率与塑性功之间存在良好的双曲线关系,在当前试验围压范围内存在极限颗粒破碎率;应力-应变曲线中峰值点对应的剪胀率与颗粒破碎率在倒数轴坐标中近似线性相关,与对应的最大主应力比呈线性关系;峰值内摩擦角与对应处颗粒破碎率存在良好的线性关系。  相似文献   

14.
Photonic crystals with three-dimensional dielectric structures were fabricated to control terahertz waves effectively by using micro-stereolithography of a CAD/CAM process. The photonic crystals with a diamond structure composed of acrylic lattice with nanosized alumina particles were fabricated. Dense alumina structures were obtained by successive dewaxing and sintering in an air atmosphere. The electromagnetic wave properties of these samples were measured by using a terahertz spectroscopy device. The micro periodic structures exhibited perfect band gaps in the terahertz range. To control terahertz waves, micrometer sized electromagnetic devices for cavities, filters, and antennas will be necessary.  相似文献   

15.
为数众多的计算颗粒初始流态化速度的公式大体上分为三类:第一类以Ergun公式为基础,引入经验系数加以修正;第二类以某种流体力学关系为基础;第三类属于纯经验公式。这三种类型中,以第一类式子有较大范围之Ar适应性,比较适用。本文提出的计算式子也属于Ergun型,从目前掌握的实验数据看来,比工程界广泛应用的Wen and Yu式子用于计算液-固流态化系统有更高的精确性,而且对球形与非球形颗粒都适用。  相似文献   

16.
采用实验生态方法,以攀附率为指标,研究了青蟹大眼幼体和第Ⅰ期仔蟹对不同材质(棉布、尼龙筛绢、PVC和竹木)、放置方式(水平或垂直)和构型(3种结构×3种规格)隐蔽物的选择性.结果表明:大眼幼体和仔蟹对各种隐蔽物材质选择差异不显著(p>0.05),对垂直放置隐蔽物的选择性显著高于水平放置者(p<0.01),对不同结构(草丛型、洞穴型和折角型)和不同规格(5,7和10 mm)隐蔽物选择差异均极显著(p<0.01).其中,对草丛型、洞穴型和折角型隐蔽物的选择性依次降低,对5,7和10 mm隐蔽物的选择性也依次降低.随着规格增大,大眼幼体和仔蟹对草丛型隐蔽物的选择性下降幅度最大,对5 mm草丛型隐蔽物的攀附率为30.92%和25.9%,对10 mm草丛型的仅为0.46%和1.4%. 综上所述,在研制或使用青蟹大眼幼体和仔蟹的隐蔽物时,材质选择主要应考虑耐腐蚀、对水质无不良影响、不易钩挂幼体和仔蟹附肢等因素. 隐蔽物的结构以草丛型为佳,当其亚结构的最小空隙接近大眼幼体或仔蟹全长时,应可达到最好的使用效果.  相似文献   

17.
ZrO2(3Y)增韧增强WC-20%Co金属陶瓷复合材料   总被引:1,自引:0,他引:1  
采用热等静压真空烧结工艺制备了不同含量ZrO2(3Y)/WC-20%Co金属陶瓷复合材料.对复合材料进行了硬度、抗弯强度和冲击韧性等力学性能测试,用扫描电子显微镜(SEM)分析了微观组织及冲击断口成分,用X射线衍射定量分析计算了力学性能试验前后t→m相变量.实验表明:ZrO2(3Y)在WC-20%Co基体中呈球形,均匀分布在Co相和WC相中,该复合材料抗弯强度和冲击韧性明显提高,硬度指标提高不明显.  相似文献   

18.
Colloidal nanocrystal synthesis and the organic-inorganic interface   总被引:2,自引:0,他引:2  
Yin Y  Alivisatos AP 《Nature》2005,437(7059):664-670
Colloidal nanocrystals are solution-grown, nanometre-sized, inorganic particles that are stabilized by a layer of surfactants attached to their surface. The inorganic cores possess useful properties that are controlled by their composition, size and shape, and the surfactant coating ensures that these structures are easy to fabricate and process further into more complex structures. This combination of features makes colloidal nanocrystals attractive and promising building blocks for advanced materials and devices. Chemists are achieving ever more exquisite control over the composition, size, shape, crystal structure and surface properties of nanocrystals, thus setting the stage for fully exploiting the potential of these remarkable materials.  相似文献   

19.
Whaley SR  English DS  Hu EL  Barbara PF  Belcher AM 《Nature》2000,405(6787):665-668
In biological systems, organic molecules exert a remarkable level of control over the nucleation and mineral phase of inorganic materials such as calcium carbonate and silica, and over the assembly of crystallites and other nanoscale building blocks into complex structures required for biological function. This ability to direct the assembly of nanoscale components into controlled and sophisticated structures has motivated intense efforts to develop assembly methods that mimic or exploit the recognition capabilities and interactions found in biological systems. Of particular value would be methods that could be applied to materials with interesting electronic or optical properties, but natural evolution has not selected for interactions between biomolecules and such materials. However, peptides with limited selectivity for binding to metal surfaces and metal oxide surfaces have been successfully selected. Here we extend this approach and show that combinatorial phage-display libraries can be used to evolve peptides that bind to a range of semiconductor surfaces with high specificity, depending on the crystallographic orientation and composition of the structurally similar materials we have used. As electronic devices contain structurally related materials in close proximity, such peptides may find use for the controlled placement and assembly of a variety of practically important materials, thus broadening the scope for 'bottom-up' fabrication approaches.  相似文献   

20.
Controlled synthesis and appropriate characterization of nanoscale particles of gallium-based liquid metals are critical to fulfilling their broad range of applications in the field of flexible, stretchable, and printable micro-/nanoelectronics. Herein, we report a new way to synthesize surfactant-free gallium-indium nanoparticles with controlled particle size on a variety of substrates through a facile physical vapor deposition method. It was found that with prolonged deposition time the liquid metal nanoparticles gradually grew from near-monodispersed small particles with a diameter of ~25 nm to bimodal distributed particles. A nucleation, growth, ripening and merging process was proposed to explain the observed evolution of particle size. Atomic force microscopy measurement indicates that the fabricated liquid metal nanoparticles demonstrate elastic deformation with a certain range of loads and the scanned particle size is dependent on the applied loads. We further investigated the gradual breaking process of the core-shell structured liquid metal nanoparticles, which was evidenced by multiple kinks on the force-separation curve. This work presents a new bottom-up approach to prepare nanoscale liquid metal particles and demonstrates that atomic force microscopy is a suitable technique to characterize the synthesized liquid metal nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号