首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
J Tschopp  S Sch?fer  D Masson  M C Peitsch  C Heusser 《Nature》1989,337(6204):272-274
Large granular lymphocytes and cytolytic T-lymphocytes (CTL) contain numerous cytoplasmic granules thought to be responsible, at least in part, for the cytolytic activity of these effector cells. Isolated granules are lytic for a variety of target cells and the granule proteins are specifically released upon target-cell interaction. Major proteins in mouse CTL granules are a family of seven serine proteases designated granzymes A to G, and a pore-forming protein called perforin (cytolysin). Purified perforin is cytolytic in the presence of Ca2+ and shows ultrastructural, immunological and amino-acid sequence similarities to complement component C9. Despite these similarities, perforin and C9 are clearly distinct in their mode of target-cell recognition. Whereas C9 insertion is absolutely dependent on a receptor moiety assembled from the complement proteins C5b, C6, C7, and C8 on the target-cell membrane, no requirement for a receptor molecule has been reported for perforin. Here, we demonstrate that phosphorylcholine acts as a specific, Ca2+-dependent receptor molecule for perforin.  相似文献   

3.
The radioprotective effects of 6 Gui-Pi-Wan extracts were investigated by examining cell viability and 30-d survival of mice after total-body 60Co irradiation. Pretreatment with Gui-Pi-Wan precipitate by water extraction and alcohol precipitation (PWA) prior to irradiation resulted in significantly higher cell survival and lower apoptosis rates at 24 h after 5 Gy radiation, and increased 30-d survival in mice after exposure to a potentially lethal dose of 8 Gy. These results collectively indicate that PWA of Gui-Pi-Wan extracts is an effective radioprotective agent.  相似文献   

4.
Oxygen consumption by carnivorous reptiles increases enormously after they have eaten a large meal in order to meet metabolic demands, and this places an extra load on the cardiovascular system. Here we show that there is an extraordinarily rapid 40% increase in ventricular muscle mass in Burmese pythons (Python molurus) a mere 48 hours after feeding, which results from increased gene expression of muscle-contractile proteins. As this fully reversible hypertrophy occurs naturally, it could provide a useful model for investigating the mechanisms that lead to cardiac growth in other animals.  相似文献   

5.
Lee JB  Hite RK  Hamdan SM  Xie XS  Richardson CC  van Oijen AM 《Nature》2006,439(7076):621-624
A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.  相似文献   

6.
Maechler P  Wollheim CB 《Nature》1999,402(6762):685-689
The hormone insulin is stored in secretory granules and released from the pancreatic beta-cells by exocytosis. In the consensus model of glucose-stimulated insulin secretion, ATP is generated by mitochondrial metabolism, promoting closure of ATP-sensitive potassium (KATP) channels, which depolarizes the plasma membrane. Subsequently, opening of voltage-sensitive Ca2+ channels increases the cytosolic Ca2+ concentration ([Ca2+]c) which constitutes the main trigger initiating insulin exocytosis. Nevertheless, the Ca2+ signal alone is not sufficient for sustained secretion. Furthermore, glucose elicits a secretory response under conditions of clamped, elevated [Ca2+]c. A mitochondrial messenger must therefore exist which is distinct from ATP. We have now identified this as glutamate. We show that glucose generates glutamate from beta-cell mitochondria. A membrane-permeant glutamate analogue sensitizes the glucose-evoked secretory response, acting downstream of mitochondrial metabolism. In permeabilized cells, under conditions of fixed [Ca2+]c, added glutamate directly stimulates insulin exocytosis, independently of mitochondrial function. Glutamate uptake by the secretory granules is likely to be involved, as inhibitors of vesicular glutamate transport suppress the glutamate-evoked exocytosis. These results demonstrate that glutamate acts as an intracellular messenger that couples glucose metabolism to insulin secretion.  相似文献   

7.
Lay AJ  Jiang XM  Kisker O  Flynn E  Underwood A  Condron R  Hogg PJ 《Nature》2000,408(6814):869-873
Disulphide bonds in secreted proteins are considered to be inert because of the oxidizing nature of the extracellular milieu. An exception to this rule is a reductase secreted by tumour cells that reduces disulphide bonds in the serine proteinase plasmin. Reduction of plasmin initiates proteolytic cleavage in the kringle 5 domain and release of the tumour blood vessel inhibitor angiostatin. New blood vessel formation or angiogenesis is critical for tumour expansion and metastasis. Here we show that the plasmin reductase isolated from conditioned medium of fibrosarcoma cells is the glycolytic enzyme phosphoglycerate kinase. Recombinant phosphoglycerate kinase had the same specific activity as the fibrosarcoma-derived protein. Plasma of mice bearing fibrosarcoma tumours contained several-fold more phosphoglycerate kinase, as compared with mice without tumours. Administration of phosphoglycerate kinase to tumour-bearing mice caused an increase in plasma levels of angiostatin, and a decrease in tumour vascularity and rate of tumour growth. Our findings indicate that phosphoglycerate kinase not only functions in glycolysis but is secreted by tumour cells and participates in the angiogenic process as a disulphide reductase.  相似文献   

8.
Hedgehog acts as a somatic stem cell factor in the Drosophila ovary   总被引:12,自引:0,他引:12  
Zhang Y  Kalderon D 《Nature》2001,410(6828):599-604
Secreted signalling molecules of the Hedgehog (Hh) family have many essential patterning roles during development of diverse organisms including Drosophila and humans. Although Hedgehog proteins most commonly affect cell fate, they can also stimulate cell proliferation. In humans several distinctive cancers, including basal-cell carcinoma, result from mutations that aberrantly activate Hh signal transduction. In Drosophila, Hh directly stimulates proliferation of ovarian somatic cells. Here we show that Hh acts specifically on stem cells in the Drosophila ovary. These cells cannot proliferate as stem cells in the absence of Hh signalling, whereas excessive Hh signalling produces supernumerary stem cells. We deduce that Hh is a stem-cell factor and suggest that human cancers due to excessive Hh signalling might result from aberrant expansion of stem cell pools.  相似文献   

9.
Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.  相似文献   

10.
Zhai RG  Zhang F  Hiesinger PR  Cao Y  Haueter CM  Bellen HJ 《Nature》2008,452(7189):887-891
Neurodegeneration can be triggered by genetic or environmental factors. Although the precise cause is often unknown, many neurodegenerative diseases share common features such as protein aggregation and age dependence. Recent studies in Drosophila have uncovered protective effects of NAD synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) against activity-induced neurodegeneration and injury-induced axonal degeneration. Here we show that NMNAT overexpression can also protect against spinocerebellar ataxia 1 (SCA1)-induced neurodegeneration, suggesting a general neuroprotective function of NMNAT. It protects against neurodegeneration partly through a proteasome-mediated pathway in a manner similar to heat-shock protein 70 (Hsp70). NMNAT displays chaperone function both in biochemical assays and cultured cells, and it shares significant structural similarity with known chaperones. Furthermore, it is upregulated in the brain upon overexpression of poly-glutamine expanded protein and recruited with the chaperone Hsp70 into protein aggregates. Our results implicate NMNAT as a stress-response protein that acts as a chaperone for neuronal maintenance and protection. Our studies provide an entry point for understanding how normal neurons maintain activity, and offer clues for the common mechanisms underlying different neurodegenerative conditions.  相似文献   

11.
Hypervariable C-terminal domain of rab proteins acts as a targeting signal   总被引:44,自引:0,他引:44  
Mammalian cells express many ras-like low molecular mass GTP-binding proteins (rab proteins) that are highly homologous to the Ypt1 and Sec4 proteins involved in controlling secretion in yeast. Owing to their structural similarity and to their variety, rab proteins have been postulated to act as specific regulators of membrane traffic in exocytosis and endocytosis, and rab5 has been shown to be involved in early endosome fusion in vitro. In agreement with their postulated functions, all rab proteins studied so far have been found in distinct subcompartments along the exocytic or endocytic pathways. To define the region mediating their specific localization, we transiently expressed rab2, rab5 and rab7 hybrid proteins in BHK cells, and determined their intracellular localization by immunofluorescence confocal microscopy and subcellular fractionation. Here we present evidence that the highly variable C-terminal domain contains structural elements necessary for the association of rab proteins with their specific target membranes in the endocytic pathway.  相似文献   

12.
Receptors for the Fc portion of immunoglobulins or for the third component of complement (C3) are present on a variety of circulating and fixed tissue cells including granulocytes, monocytes, lymphocytes and glomerular epithelial cells. Cells which lack Fc receptors may express them after infection by herpes simplex virus (HSV)-1, HSV-2, cytomegalovirus or varicella zoster virus. We recently reported that infection by HSV-1 induces both Fc and C3 receptors on human endothelial cells. Glycoprotein E of HSV-1 has been shown to function as an Fc receptor. We now demonstrate that glycoprotein C (gC) of HSV-1 functions as a C3b receptor. This receptor appears following HSV-1, but not HSV-2, infection. Detection of the C3b receptor is blocked by monoclonal antibodies to glycoprotein C (gC) of HSV-1, but not by monoclonal antibodies to other HSV-1 glycoproteins. In addition, the MP mutant of HSV-1, which lacks gC, fails to express a C3b receptor. These results assign a new function of gC of HSV-1 and demonstrate potentially important differences between HSV-1 and HSV-2 glycoproteins.  相似文献   

13.
Shin C  Feng Y  Manley JL 《Nature》2004,427(6974):553-558
The cellular response to stresses such as heat shock involves changes in gene expression. It is well known that the splicing of messenger RNA precursors is generally repressed on heat shock, but the factors responsible have not been identified. SRp38 is an SR protein splicing factor that functions as a general repressor of splicing. It is activated by dephosphorylation and required for splicing repression in M-phase cells. Here we show that SRp38 is also dephosphorylated on heat shock and that this dephosphorylation correlates with splicing inhibition. Notably, depletion of SRp38 from heat-shocked cell extracts derepresses splicing, and adding back dephosphorylated SRp38 specifically restores inhibition. We further show that dephosphorylated SRp38 interacts with a U1 small nuclear ribonucleoprotein particle (snRNP) protein, and that this interaction interferes with 5'-splice-site recognition by the U1 snRNP. Finally, SRp38-deficient DT40 cells show an altered cell-cycle profile consistent with a mitotic defect; they are also temperature sensitive and defective in recovery after heat shock. SRp38 thus plays a crucial role in cell survival under stress conditions by inhibiting the splicing machinery.  相似文献   

14.
Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy   总被引:1,自引:0,他引:1  
FK506 binding proteins 12 and 12.6 (FKBP12 and FKBP12.6) are intracellular receptors for the immunosuppressant drug FK506 (ref. 1). The skeletal muscle ryanodine receptor (RyR1) is isolated as a hetero-oligomer with FKBP12 (ref. 2), whereas the cardiac ryanodine receptor (RyR2) more selectively associates with FKBP12.6 (refs 3, 4, 5). FKBP12 modulates Ca2+ release from the sarcoplasmic reticulum in skeletal muscle and developmental cardiac defects have been reported in FKBP12-deficient mice, but the role of FKBP12.6 in cardiac excitation-contraction coupling remains unclear. Here we show that disruption of the FKBP12.6 gene in mice results in cardiac hypertrophy in male mice, but not in females. Female hearts are normal, despite the fact that male and female knockout mice display similar dysregulation of Ca2+ release, seen as increases in the amplitude and duration of Ca2+ sparks and calcium-induced calcium release gain. Female FKBP12.6-null mice treated with tamoxifen, an oestrogen receptor antagonist, develop cardiac hypertrophy similar to that of male mice. We conclude that FKBP12.6 modulates cardiac excitation-contraction coupling and that oestrogen plays a protective role in the hypertrophic response of the heart to Ca2+ dysregulation.  相似文献   

15.
R Sugiura  T Toda  S Dhut  H Shuntoh  T Kuno 《Nature》1999,399(6735):479-483
The mitogen-activated protein kinase (MAPK) pathway is a highly conserved eukaryotic signalling cascade that converts extracellular signals into various outputs, such as cell growth and differentiation. MAPK is phosphorylated and activated by a specific MAPK kinase (MAPKK): MAPKK is therefore considered to be an activating regulator of MAPK. Pmk1 is a MAPK that regulates cell integrity and which, with calcineurin phosphatase, antagonizes chloride homeostasis in fission yeast. We have now identified Pek1, a MAPKK for Pmk1 MAPK. We show here that Pek1, in its unphosphorylated form, acts as a potent negative regulator of Pmk1 MAPK signalling. Mkh1, an upstream MAPKK kinase (MAPKKK), converts Pek1 from being an inhibitor to an activator. Our results indicate that Pek1 has a dual stimulatory and inhibitory function which depends on its phosphorylation state. This switch-like mechanism could contribute to the all-or-none physiological response mediated by the MAPK signalling pathway.  相似文献   

16.
During vertebrate embryo development, the breaking of the initial bilateral symmetry is translated into asymmetric gene expression around the node and/or in the lateral plate mesoderm. The earliest conserved feature of this asymmetric gene expression cascade is the left-sided expression of Nodal, which depends on the activity of the Notch signalling pathway. Here we present a mathematical model describing the dynamics of the Notch signalling pathway during chick embryo gastrulation, which reveals a complex and highly robust genetic network that locally activates Notch on the left side of Hensen's node. We identify the source of the asymmetric activation of Notch as a transient accumulation of extracellular calcium, which in turn depends on left-right differences in H+/K+-ATPase activity. Our results uncover a mechanism by which the Notch signalling pathway translates asymmetry in epigenetic factors into asymmetric gene expression around the node.  相似文献   

17.
H Kawasaki  K Takasaki  A Saito  K Goto 《Nature》1988,335(6186):164-167
Systemic blood pressure is controlled by changes in the resistance of the peripheral vascular bed for example in the mesenteric blood vessels. The tone of peripheral blood vessels is primarily maintained by sympathetic vasoconstrictor nerves. Although vasodilator innervation has been identified in certain isolated elastic arteries, it is not known whether vasodilator nerves contribute to the regulation of the peripheral resistance vessels. We present pharmacological evidence for the existence of nonadrenergic, noncholinergic (NANC) vasodilator nerves in the mesenteric resistance vessel of the rat and that the resistance is controlled by not only sympathetic vasoconstrictor nerves but also NANC vasodilator nerves. We also show that the neurogenic vasodilation was selectively abolished by depleting endogenous calcitonin gene-related peptide (CGRP), a potent vasodilator neuropeptide, from perivascular nerves. This indicates that CGRP is a novel vasodilator neurotransmitter and may play a role in control of the total peripheral resistance of systemic circulation through a local reflex mechanism.  相似文献   

18.
19.
Tumour biology: herceptin acts as an anti-angiogenic cocktail   总被引:20,自引:0,他引:20  
Izumi Y  Xu L  di Tomaso E  Fukumura D  Jain RK 《Nature》2002,416(6878):279-280
Malignant tumours secrete factors that enable them to commandeer their own blood supply (angiogenesis), and blocking the action of these factors can inhibit tumour growth. But because tumours may become resistant to treatments that target individual angiogenic factors by switching over to other angiogenic molecules, a cocktail of multiple anti-angiogenic agents should be more effective. Here we show that herceptin, a monoclonal antibody against the cell-surface receptor HER2 (for human epidermal growth factor receptor-2; ref. 4), induces normalization and regression of the vasculature in an experimental human breast tumour that overexpresses HER2 in mice, and that it works by modulating the effects of different pro- and anti-angiogenic factors. As a single agent that acts against multiple targets, herceptin, or drugs like it, may offer a simple alternative to combination anti-angiogenic treatments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号