首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
斑马鱼Cyclin C的cDNA克隆及其在发育过程中的表达   总被引:1,自引:0,他引:1  
细胞周期蛋白C(cyclin C)与细胞周期依赖性蛋白激酶cdk8结合,通过磷酸化RNA 聚合酶 II 和 TFIIH调控转录.在脊椎动物胚胎发育过程中有关细胞周期蛋白C合子型转录激活机制尚知甚少.本研究克隆了斑马鱼细胞周期蛋白C基因,并用Northern杂交和整体原位杂交技术检测其在胚胎发育过程中的表达状态.结果显示,斑马鱼细胞周期蛋白C高度保守,与人细胞周期蛋白C有88%的蛋白序列同源;斑马鱼细胞周期蛋白C在母型期开始表达,其表达伴随中囊胚转换时期的合子型转录激活以及整个胚胎发育过程.  相似文献   

2.
3.
4.
5.
6.
7.
V T Nguyen  T Kiss  A A Michels  O Bensaude 《Nature》2001,414(6861):322-325
  相似文献   

8.
9.
10.
11.
12.
Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein.   总被引:30,自引:0,他引:30  
T G Boyer  M E Martin  E Lees  R P Ricciardi  A J Berk 《Nature》1999,399(6733):276-279
  相似文献   

13.
14.
15.
Internal control of the coated vesicle pp50-specific kinase complex   总被引:6,自引:0,他引:6  
A Pauloin  P Jollès 《Nature》1984,311(5983):265-267
The polyhedral surface lattice of coated vesicles consists of three-legged hexameric protein complexes called triskelions which constitute the basic assembly unit. The triskelion is a molecular complex of molecular weight 630,000 (Mr 630K) composed of three clathrin heavy chains (subunit 180K) and three light chains (subunits 33K and 36K) (refs 2,3). The presence of additional coated vesicle-specific proteins in the 100-130K and 50-55K range have been reported. We previously described the presence of a cyclic nucleotide- and Ca2+-independent protein kinase activity in coated vesicles which was confirmed by others. This protein kinase specifically phosphorylates the 50K protein (pp50). In this report, we show that the coated vesicle kinase and its 50K protein substrate are part of a stable multimolecular system. In addition we show that the clathrin-light chain complex stimulates the pp50 phosphorylation and only light chains are implicated in this stimulation and that the pp50 phosphorylation does not seem to be affected by the vesicle.  相似文献   

16.
Nishiyama T  Ohsumi K  Kishimoto T 《Nature》2007,446(7139):1096-1099
Until fertilization, the meiotic cell cycle of vertebrate eggs is arrested at metaphase of meiosis II by a cytoplasmic activity termed cytostatic factor (CSF), which causes inhibition of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets mitotic cyclins-regulatory proteins of meiosis and mitosis-for degradation. Recent studies indicate that Erp1/Emi2, an inhibitor protein for the APC/C, has an essential role in establishing and maintaining CSF arrest, but its relationship to Mos, a mitogen-activated protein kinase (MAPK) kinase kinase that also has an essential role in establishing CSF arrest through activation of p90 ribosomal S6 kinase (p90rsk), is unclear. Here we report that in Xenopus eggs Erp1 is a substrate of p90rsk, and that Mos-dependent phosphorylation of Erp1 by p90rsk at Thr 336, Ser 342 and Ser 344 is crucial for both stabilizing Erp1 and establishing CSF arrest in meiosis II oocytes. Semi-quantitative analysis with CSF-arrested egg extracts reveals that the Mos-dependent phosphorylation of Erp1 enhances, but does not generate, the activity of Erp1 that maintains metaphase arrest. Our results also suggest that Erp1 inhibits cyclin B degradation by binding the APC/C at its carboxy-terminal destruction box, and this binding is also enhanced by the Mos-dependent phosphorylation. Thus, Mos and Erp1 collaboratively establish and maintain metaphase II arrest in Xenopus eggs. The link between Mos and Erp1 provides a molecular explanation for the integral mechanism of CSF arrest in unfertilized vertebrate eggs.  相似文献   

17.
The mammalian shc gene encodes two overlapping, widely expressed proteins of 46 and 52K, with a carboxy-terminal SH2 domain that binds activated growth factor receptors, and a more amino-terminal glycine/proline-rich region. These shc gene products (Shc) are transforming when overexpressed in fibroblasts. Shc proteins become phosphorylated on tyrosine in cells stimulated with a variety of growth factors, and in cells transformed by v-src (ref. 2), suggesting that they are tyrosine kinase targets that control a mitogenic signalling pathway. Here we report that tyrosine-phosphorylated Shc proteins form a specific complex with a non-phosphorylated 23K polypeptide encoded by the grb2/sem-5 gene. The grb2/sem-5 gene product itself contains an SH2 domain, which mediates binding to Shc, and is implicated in activation of the Ras guanine nucleotide-binding protein by tyrosine kinases in both Caenorhabditis elegans and mammalian cells. Consistent with a role in signalling through Ras, shc overexpression induced Ras-dependent neurite outgrowth in PC12 cells. These results suggest that Shc tyrosine phosphorylation can couple tyrosine kinases to Grb2/Sem-5, through formation of a Shc-Grb2/Sem-5 complex, and thereby regulate the mammalian Ras signalling pathway.  相似文献   

18.
19.
Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis   总被引:18,自引:0,他引:18  
S Yamashiro  Y Yamakita  H Hosoya  F Matsumura 《Nature》1991,349(6305):169-172
One of the profound changes in cellular morphology which occurs during mitosis is a massive alteration in the organization of the microfilament cytoskeleton. This change, together with other mitotic events including nuclear membrane breakdown, chromosome condensation and formation of mitotic spindles, is induced by a molecular complex called maturation promoting factor. This consists of at least two subunits, a polypeptide of relative molecular mass 45,000-62,000 (Mr 45-62K) known as cyclin, and a 34K catalytic subunit which has serine/threonine kinase activity and is known as cdc2 kinase. Non-muscle caldesmon, an 83K actin- and calmodulin-binding protein, is dissociated from microfilaments during mitosis, apparently as a consequence of mitosis-specific phosphorylation. We now report that cdc2 kinase phosphorylates caldesmon in vitro principally at the same sites as those phosphorylated in vivo during mitosis, and that phosphorylation reduces the binding affinity of caldesmon for both actin and calmodulin. Because caldesmon inhibits actomyosin ATPase, our results suggest that cdc2 kinase directly causes microfilament reorganization during mitosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号