首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为准确计算波形钢腹板混凝土组合梁的挠度,推导了考虑剪切变形影响的波形钢腹板混凝土组合梁的挠曲线初参数方程.首先分析了波形钢腹板混凝土组合梁截面上剪应力的分布特点,得到了腹板剪应力的简化计算公式;然后推导了其挠曲线的初参数方程,提出了组合梁挠度的计算方法,进而对承受跨中集中荷载、两点对称荷载和均布荷载等3种典型荷载作用下的波形钢腹板混凝土组合梁的挠度进行分析,并将其结果与试验实测值、有限元结果进行比较,验证了文中理论方法的准确性和适用性;最后利用文中理论方法和有限元方法分析了跨高比和宽高比对波形钢腹板混凝土组合梁剪切变形的影响,并给出了波形钢腹板混凝土组合梁挠度计算是否需要考虑剪切变形影响的跨高比界限建议值.  相似文献   

2.
为了研究钢桁腹式混凝土组合箱梁的挠度计算方法和影响其挠度变化的因素,将钢桁腹杆换算为具有等效厚度的换算钢腹板,对悬臂板纵向位移函数进行修正,再利用变分法原理推导综合考虑腹杆剪切变形和剪力滞效应的挠度计算公式.运用有限元软件ANSYS建立组合箱梁的有限元模型,对有限元数值计算值和理论计算值进行比较分析,并在此基础上研究高跨比和腹杆水平倾角对组合箱梁由腹杆剪切变形和剪力滞效应产生的附加挠度的影响.研究结果表明:对组合箱梁悬臂板纵向位移函数进行修正可提高挠度计算精度;对于处于合理高跨比的组合箱梁而言,其腹杆的剪切变形和剪力滞效应产生的附加挠度不可忽略;组合箱梁腹杆水平倾角仅会对腹杆剪切变形引起的附加挠度产生影响.  相似文献   

3.
根据波形钢腹板PC组合箱梁的特性,运用Hamilton原理推导了波形钢腹板PC组合箱梁考虑剪切变形时的扭转振动频率计算公式.以5.2 m波形钢腹板试验梁为对象进行了模态试验,并利用有限元软件ANSYS建立波形钢腹板PC组合箱梁的模型进行模态分析.通过对试验梁模态试验的扭转振动频率的实测值、理论计算值以及有限元分析数据进行对比分析,证明了理论公式推导的正确性,论证了有限元模型的适用性,并通过分析得出剪切变形对波形钢腹板PC组合箱梁的扭转振动性能有较大影响.文中还利用参数分析的方法,分析波形钢腹板厚度以及波折角对该组合箱梁的扭转振动频率的影响,结果表明:随着钢腹板厚度的增加,波形钢腹板PC组合箱梁的扭转振动频率相应增大;随着钢腹板波折角的增大,波形钢腹板PC组合箱梁的扭转振动频率有所减小.  相似文献   

4.
目前有关钢-混组合箱梁桥的剪切变形对其荷载横向分布影响的研究较少。首先,在考虑自身剪切变形的基础上,采用正弦荷载得出刚度折减系数,并推导出了考虑剪切变形效应的偏心压力法、修正偏心压力法以及考虑剪切变形效应的刚接梁法等,用于计算多梁式波形钢腹板-钢底板-混凝土顶板(简称改进型波形钢腹板,即CSWSB)组合小箱梁桥横向荷载分布系数的方法的计算公式;然后,选取一多梁式改进型波形钢腹板组合小箱梁桥实桥进行了试验研究;最后将采用文中讨论的各计算方法计算得到的结果与有限元法结果、试验实测值进行了对比分析。结果表明:采用考虑剪切变形效应的刚接梁法得到的挠度值和Ansys模拟值更为接近,计算跨中的荷载横向分布系数时应采用考虑剪切变形效应的刚接梁法;当桥梁结构不满足窄桥条件时,宜采用考虑剪切变形效应的刚接梁法计算跨中截面的荷载横向分布系数;当满足窄桥条件时,可以采用考虑剪切变形效应的修正偏心压力法计算横向分布系数。  相似文献   

5.
根据组合箱梁剪切变形和界面滑移模式,以能量变分原理为基础,考虑剪切变形和滑移双重效应,建立组合箱梁的控制微分方程和边界条件,利用最小势能原理推导出组合箱梁挠度和滑移联合微分方程的解析解.推导不同荷载作用下的滑移效应附加弯矩,利用附加弯矩表达公式和结构力学挠度计算公式计算滑移对挠度的影响,并与试验结果进行对比.研究结果表明,该方法解析解与试验结果吻合良好,更符合实际情况,证明了该方法的有效性,同时为组合箱梁承载力的有限元分析奠定了基础.  相似文献   

6.
为科学合理计算钢-混组合梁在长期荷载作用下的挠度,综合考虑钢梁与混凝土桥面板层间滑移效应、钢-混组合梁全截面剪切变形及混凝土桥面板收缩徐变的影响,运用能量变分法推导出钢-混组合梁挠度计算的控制微分方程.引入均布荷载作用下简支和两跨连续钢-混组合梁的自然边界条件,求解出了钢-混组合梁在这两种边界条件下的挠度计算公式.计算公式的可靠性得到了实测值和有限元值的验证.研究结果表明:考虑剪切变形与层间滑移后,两跨连续钢-混组合梁跨中最大挠度计算值相对于初等梁理论增大37.4%,而同时考虑混凝土收缩徐变后其挠度计算值增大58%;简支钢-混组合梁考虑混凝土的收缩徐变后挠度计算值相对于初等梁理论增大1.55倍,可见混凝土的收缩徐变效应对钢-混组合梁的挠度影响较大.研究成果可为实际工程中钢-混组合梁在长期荷载作用下的挠度计算提供理论依据.  相似文献   

7.
为科学合理计算钢-混组合梁在长期荷载作用下的挠度,综合考虑钢梁与混凝土桥面板层间滑移效应、钢-混组合梁全截面剪切变形及混凝土桥面板收缩徐变的影响,运用能量变分法推导出钢-混组合梁挠度计算的控制微分方程.引入均布荷载作用下简支和两跨连续钢-混组合梁的自然边界条件,求解出了钢-混组合梁在这两种边界条件下的挠度计算公式.计算公式的可靠性得到了实测值和有限元值的验证.研究结果表明:考虑剪切变形与层间滑移后,两跨连续钢-混组合梁跨中最大挠度计算值相对于初等梁理论增大37.4%,而同时考虑混凝土收缩徐变后其挠度计算值增大58%;简支钢-混组合梁考虑混凝土的收缩徐变后挠度计算值相对于初等梁理论增大1.55倍,可见混凝土的收缩徐变效应对钢-混组合梁的挠度影响较大.研究成果可为实际工程中钢-混组合梁在长期荷载作用下的挠度计算提供理论依据.  相似文献   

8.
为研究变截面波形钢腹板的抗剪性能,首先,在正交异性板理论和薄板小挠度理论的基础上,运用伽辽金法对波形钢腹板弹性整体剪切屈曲强度的计算公式进行推导;其次,将推导公式计算值与ANSYS有限元计算值及规范公式计算值进行对比分析,并将公式推导值与文献试验值进行对比;最后,运用有限元法研究不同波纹型号、腹板厚度和梁高变化形式对变截面波形钢腹板弹性剪切屈曲性能的影响规律.结果表明:推导公式计算值与有限元值试验值吻合良好,规范公式由于忽略了扭转刚度Dxy对波形钢腹板整体剪切屈曲强度的贡献,规范值计算偏于保守;随着波纹尺寸的增加,剪切屈曲强度总体呈先增大后减小的趋势,其中1600型波形钢腹板的抗剪性能达到最大;随着腹板厚度的增加,剪切屈曲强度逐渐增大;变截面波形钢腹板的剪切屈曲强度大于等截面波形钢腹板的抗剪强度,并且随着梁底与水平方向的夹角β的增大,变截面波形钢腹板剪切屈曲强度增加.所得结论可为变截面波形钢腹板的抗剪设计提供参考依据.  相似文献   

9.
为精确计算波形钢腹板PC连续箱梁桥的自振频率,在综合考虑箱梁剪力滞效应、波形钢腹板剪切模量修正及其剪切变形的影响下,综合运用能量变分法与Hamilton原理,推导获得该桥型自由弯曲振动的控制微分方程。在给定的自然边界条件下,运用分段联立法求得波形钢腹板PC两跨连续箱梁桥自由弯曲振动频率的计算公式。制作了两跨等截面模型试验梁,采用DHDAS动态信号测试分析系统对其动力特性进行实测,并运用ANSYS有限元软件对试验梁的动力特性进行分析。运用所得计算公式求得试验梁的自由弯曲振动频率,将其与实测值及有限元分析结果进行对比,三者吻合良好,验证计算公式的可靠性。最后采用理论公式和有限元仿真对波形钢腹板PC连续箱梁桥自振频率的影响参数进行分析。研究结果表明:波形钢腹板的剪切变形对其自由弯曲振动频率的影响较大,而横隔板数量对其扭转振动频率的影响较大,本文所得结论可为同类桥梁自振频率的分析与计算提供依据。  相似文献   

10.
为准确分析腹板手风琴效应、剪切变形与翼板剪力滞效应对波形钢腹板组合箱梁挠曲变形及应力的影响,利用截面变形连续条件建立了综合考虑腹板手风琴效应、剪切变形与剪力滞效应的挠曲位移模式.通过引入广义剪切位移和剪力滞位移,将该挠曲变形状态解耦为拟平截面的Euler梁挠曲、广义剪切变形引起的挠曲以及剪力滞效应引起的挠曲3种状态.依据广义位移与转角的关系,选用Hermite多项式作为位移形函数,推导出广义位移的单元刚度矩阵,提出了适合该组合箱梁的梁段分析方法.数值算例结果表明,基于该方法得到的应力及变形与三维空间有限元结果吻合良好.广义剪切变形对梁的挠曲变形与应力存在较大影响,集中荷载作用或中支点截面附近的应力放大系数甚至超过2.0.  相似文献   

11.
为精确计算钢-混凝土连续组合梁的挠度,在综合考虑钢梁与混凝土板之间的滑移效应及组合梁剪切变形影响的基础上,运用能量变分法推导出了钢-混凝土组合梁挠度计算的平衡微分方程,并给出了相对应的边界条件.通过引入均布荷载作用下钢-混凝土两跨连续组合梁的边界条件,求得了考虑滑移效应和剪切变形效应下组合梁的挠度计算公式,并对计算公式的正确性进行了验证.对钢-混凝土连续组合梁挠度做进一步分析表明:滑移效应会降低钢-混凝土连续组合梁的刚度,使组合梁产生附加挠度,并且会在中支点处引起梁负弯矩的增加,对混凝土板的受力产生不利影响.层间滑移位移随剪力连接件抗剪刚度的增大而减小,当剪力连接件抗剪刚度小于1200MPa时,层间滑移效应产生的附加挠度较大,对总挠度的影响也较大,应当考虑滑移效应对组合梁挠度的影响;当剪力连接件抗剪刚度大于1200MPa时,层间滑移效应产生的附加挠度较小,对总挠度的影响也较小,可以忽略滑移效应对组合梁挠度的影响.  相似文献   

12.
基于单室箱梁翼缘板选取最大剪切位移差函数为广义剪力滞位移函数,通过假定箱梁竖向变形由腹板剪切变形与翼板剪滞效应引起的位移,利用变形协调条件和能量变分法最小势能原理推导了特定边界和荷载条件下考虑剪切变形的单室箱梁的挠曲位移表达式。利用推导的挠曲微分方程计算了单室简支箱梁承受均布荷载作用下的挠度,对靠近梁端部采用挠度修正系数线性内插求解竖向变形,建立单室简支箱有限元分析模型;对比解析解和数值解。结果表明:剪切变形对简支单室箱梁承受均布荷载作用的挠度具有一定的影响;利用推导的公式能够快速、有效地计算简支单室箱梁承受均布荷载下剪切与剪滞双重效应的挠度;跨中挠度与数值解差6%,吻合良好。  相似文献   

13.
大跨径预应力混凝土箱梁的剪切变形分析   总被引:2,自引:0,他引:2  
为分析剪切变形对预应力混凝土箱梁挠度的影响,依据经典Timoshenko梁理论,参照已建大跨预应力混凝土箱梁的截面尺寸,简化选取等截面悬臂箱梁为分析对象建立了空间有限元模型.按不考虑剪切变形和考虑剪切变形两种情况计算了箱梁的挠度,分析了剪切变形的影响随箱梁高跨比的变化,并讨论了传统观点中的考虑剪切变形的高跨比门槛值在大跨径预应力混凝土箱梁挠度计算中的适用性.然后,建立了虎门大桥辅航道桥的施工阶段分析模型,模拟箱梁的实际悬臂施工过程,分析了剪切变形对箱梁挠度的影响规律,计算并探讨了箱梁的长期徐变挠度,进而推算了箱梁的剪切徐变挠度.分析结果表明,剪切徐变是造成箱梁持续下挠的原因之一.  相似文献   

14.
为了研究节段预制拼装波形钢腹板连续组合箱梁的抗剪性能,制作两片缩尺试验梁,包括节段拼装变截面波形钢腹板连续箱梁和相同尺寸的整体浇筑变截面波形钢腹板连续箱梁. 通过静力试验和数值分析,得到了节段拼装梁的剪应力分布规律、波形钢腹板承剪比例等. 结果表明:在中跨对称加载作用下,中跨1/4位置处节段拼装梁与整体梁波形钢腹板的剪应力沿梁高方向均匀分布,节段拼装梁的剪应力值要大于整体梁的相应值. 推导出节段拼装变截面波形钢腹板组合箱梁的剪应力计算公式,并考虑施工工艺对剪应力的影响,通过与实测值对比验证公式的准确性. 两片试验梁的波形钢腹板的承剪比受荷载影响较小,保持一个恒定的比例;两片试验梁在中支座位置处的钢腹板承剪比均为50%,并沿着试验梁纵向方向向两侧不断增大;在中跨1/4位置,节段拼装梁钢腹板的承剪比达到85%以上,整体梁的钢腹板在该位置的承剪比在75%左右,两片试验梁在边跨相应位置承剪比相差不大. 将适用于节段拼装混凝土箱梁的AASHTO接缝抗剪强度计算公式乘0.9可用于接缝截面抗剪承载力计算;上述公式值与试验值、有限元结果的误差在5%左右,可以较好地预测钢混组合结构胶接缝的抗剪强度.  相似文献   

15.
对新型结构波形钢腹板预弯工形梁的制作工艺和承载性能开展了探索性研究.通过制作缩尺试验梁,着重分析了波形钢腹板钢梁在预弯力作用下的挠度和反弹后一期混凝土的压应力,并采用静载试验测试了对称集中荷载作用下的梁体变形、开裂弯矩、破坏形态和极限承载力等.试验结果表明,在预弯力作用下波形钢腹板具有良好的稳定性.释放预弯力后波形钢腹板钢梁能够有效地将预应力施加在一期混凝土上,跨中下缘混凝土的压应力为12.9 MPa.试验梁具有良好的抗弯刚度、延性和抗裂性能,其开裂荷载约为极限承载力的47%.理论与实测结果表明,波形钢腹板预弯工形梁的竖向剪切挠度占总挠度的22.4%,在计算挠度时需考虑剪切变形的影响.  相似文献   

16.
波形钢腹板的设计方法   总被引:2,自引:0,他引:2  
针对大跨径波形钢腹板PC组合箱梁结构中的波形钢腹板的失稳破坏形式,分别对波形钢腹板的剪应力、局部屈曲强度、整体屈曲强度以及合成屈曲强度进行了计算,绘制出了波形钢腹板局部剪切屈曲界限图和整体剪切屈曲界限图,给出了波形钢腹板的一般设计方法和步骤,并将世界上已建的部分波形钢腹板PC组合箱梁桥的波形钢板的设计资料进行了归纳整理.验证结果表明,剪切屈曲界限图可用于波形钢腹板的参数设计,山东鄄城黄河大桥控制参数均位于适用范围内,为波形钢腹板的设计提供了依据.  相似文献   

17.
进行波形钢腹板-混凝土组合箱梁和平钢腹板-混凝土组合箱梁的模型试验.提出模拟钢腹板-混凝土组合结构的有限元方法,并在大型通用程序ANSYS中实现.有限元计算结果得到了模型梁试验结果的验证,可用于钢腹板-混凝土组合结构的数值分析.试验与数值分析结果表明,两种组合箱梁的总体受力在弹性阶段和弹塑性阶段相似.相对于平钢腹板-混凝土组合箱梁,波形钢腹板-混凝土组合箱梁由于波形钢腹板的折迭效应,其抗变形能力和抗裂性能较相对较弱,但抗剪性能和抗屈曲能力较好.在破坏模式上,波形钢腹板-混凝土组合箱梁属于整体破坏,平钢腹板-混凝土组合箱梁属于平钢腹板局部屈曲破坏,其极限承载力小于波形钢腹板-混凝土组合箱梁.平钢腹板刚度小,在实际工程应用过程中应进行加劲,以防止局部屈曲破坏早于整体破坏的发生,同时也有利于避免施工过程的局部变形.  相似文献   

18.
波形钢腹板PC组合箱梁桥抗弯承载力计算   总被引:17,自引:2,他引:17  
结合波形钢腹板PC组合箱梁桥抗弯特性,对该类桥的抗弯承载能力计算方法进行了探讨。分析了波形钢腹板组合箱梁有效分布宽度、偏载效应的已有研究成果,参考国外对该类桥中体外预应力筋的有效高度和极限应力取值,根据弯曲理论推导出波形钢腹板PC组合箱梁桥抗弯承载能力计算公式。模型梁算例表明,该计算方法简单可行。  相似文献   

19.
体外预应力对波形钢腹板箱梁自振频率的影响分析   总被引:1,自引:0,他引:1  
为了研究体外预应力对波形钢腹板箱梁动力特性的影响,推导了波形钢腹板箱梁在体外预应力作用下的自振频率计算公式.以5.2 m缩尺波形钢腹板试验梁为对象,利用有限元软件ANSYS建立了预应力波形钢腹板箱梁的模型,对其进行了模态分析.通过对试验梁模态试验的自振频率测试数据与理论计算值以及有限元分析数据进行对比,证明了理论公式推导的正确性,论证了有限元模型的适用性.采用理论计算和有限元数值计算相结合的方法,研究了体外预应力钢束拉力、锚固位置以及截面积对波形钢腹板自振频率的影响.研究结果表明:三者对波形钢腹板箱梁自振频率的影响均较小,在实际工程中可以忽略体外预应力对波形钢腹板箱梁动力特性的影响.  相似文献   

20.
通过建立大量的波形钢腹板预应力混凝土组合箱梁桥空间有限元模型,计算和分析钢腹板尺寸参数的变化对弯-扭耦合作用下箱梁钢腹板屈曲临界荷载系数及屈曲模态的影响规律。计算及分析结果表明:跨中偏载作用下,波形钢腹板的屈曲总是发生在跨中偏载一侧的腹板上;当只有箱梁的高跨比变化或当只有波形钢腹板的厚度变化时,在不同的折叠角度范围内,其腹板抗屈曲能力的变化幅度不同,但当折叠角度一定时,则腹板抗屈曲能力或箱梁抗扭能力的变化幅度基本相同;当只有腹板折叠角度变化时,在不同箱梁高跨比范围内,其箱梁抗扭能力的变化幅度也不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号