首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据α-Fe晶格参数,表面原子的配位不饱和性,反应的动力学几何因素,络合催化原理,以及由表面原子剩余杂化轨函所组成的基函的量子化学近似计算,本文提出N_2的端基吸附不是目前一般认为的垂直吸附在(111)晶面的底端原子上,而是N_2端基吸附在(111)晶面配位较底端原子不饱和的一个表面原子上,端基吸附与(111)面斜交约20°角,同时有三个与N_2分子中心相距约2.48A的最邻近铁原子侧基络合,生成端基加三侧基ω1,μ_3(η~2)型络合物。氨合成铁催化剂活性中心,除了这样的4-Fe原子簇吸附中心外,还需要一个和吸附中心毗邻并合用二原子的4-Fe原子簇氮分子离解中心,共构成6-Fe原子簇活性中心。本文提出的活性中心模型及吸附态,解释了H_2在铁屑上及钼屑上的吸附场电子发射显微镜图象(Brill et al.,& Ishizaka et al.);N_2或NH_3对催化剂预处理所引起的Mossbauer谱图象改变及氨合成活性的增加(Boudart et al.);N_2在Fe上的X光光电子能谱(Kishi et al.);说明了由场离子质谱证实的N_3~ ,N_4~ 的生成机理(Schmidt);~(14)N_2-~(15)N_2在Fe,Fe-Al_2O_3-K_2O上同位素交换机理,提出N或NH的表面迁移是同位素交换决定性步骤,从而解释了在Fe,Fe-Al_2O_3-K_2O上及H_2存在下同位素的显著差异及交换动力学(Ozaki et al.)。 ω_1,μ_  相似文献   

2.
在本文中,采用GCr15钢,以680和730℃的温度,0.8×10~(-2),1×10~(-2),1.2×10~(-2)和2×10~(-2)min~(-1)的应变速率进行拉伸试验,对于超塑性流动方程式δ=kε~m 中的m 和k 值随应变(δ)发生的变化进行了研究,获得了各试验条件下的m-δ关系曲线(或m-δ-C 关系曲线。C-((k_0+dk_0)/k_0))。求得了各试验条件下的m_(?)和m_F 值。肯定了GCr 15钢存在和试棒的起始应变δ(=0.00%),拉伸期间各阶段的应变δ_1(δ_(11),δ_(12),δ_(13)……),拉断时的总延伸率δ_(?)相对应的m_0(≠0),m_1(m_(11),m_(12),m_(13)……),m_(?)值和k_(?)(≠0),k_1(k_(11),k_(12),k_(13)……,),k_(?)值[1]。C_1(C_(11),C_(12),C(13)……)=(k_1(k_(11),k_(12),k_(13)……)/k_9,C_F=k_F/k_(?),其相互关系可由L。Q·m-δ方程式(或L.Q.m-δ-C 方程式)表达[2,3]:δ_I(%)=[C_(?)ε~(m_I-m_(?))-1]×100(拉伸过程中)或δ_F(%)=[C_Fε(m_F-m(?))-1]×100(试棒拉断时)在全部情况中,除一例(730℃,ε=2×10~(-2)min~(-1))外,m 值都随应变(δ)的增大而减小,直到断裂为止。此时存在C_I=C_F=1(或k_0=k_1(k_(11),k_(12),k_(13),……)=k_F)的简单情况[2,3],问题得到简化。所进行的理论曲线和实测数据的比较是令人满意的。在730℃,ε=2×10~(-2)min~(-1)的条件下,m-δ关系曲线表现为先快速上升,然后缓慢下降,直到断裂为止。将和m 峰值对应的应变量称为“极限应变量”。对于曲线上各点C 值(C_(?)和C_F)进行了计算。C-δ关系为近似的直线。直线的斜率在“极限应变”处发生突然变化  相似文献   

3.
在本文中,采用160,200,230,250℃四种温度和0.5×10~(-2),0.75×10~(-2),1×10~(-1),1.5×10~(-1)min~(-1)四种应变速率对于 Zn-22%Al 共析合金的 m-C-δ或 m-k-δ关系(简称 m-δ关系)曲线进行了研完。在曲线上表现为,m 值在一定的应变量(“极限”应变量)以内,随应变(δ)的增加而快速增高。超过“极限”应变量后,变为缓慢增高或缓慢下降,直到断裂。因此,可以肯定在一定的条件下,存在和该合金的起始应变δ_0(=0.00%)拉伸期间各个阶段的瞬时应变,δ_Ⅰ(δ_(Ⅰ1),δ_(Ⅰ2),δ_(Ⅰ3),……),拉断时的总延伸率δ_(?)相对应的 m_0(≠0),m_Ⅰ(m_(Ⅰ1),δ_(Ⅰ2),δ_(Ⅰ3),……),m_F 值和 k_0(≠0),k_Ⅰ(k_(Ⅰ1),k_(Ⅰ2),k_(Ⅰ3),……),k_F 值。C_0=k_Ⅰ/k_0=1,C_Ⅰ=k_Ⅰ/k_0,C_F=k_F/k_0(见方程式,σ=kε~m,其中σ为流变应力,(?)为应变速率,m 为流变应力的应变速率敏感性指数,k 为系数[1])。m,δ和 C 之间的关系可以由下面的 m-δ关系式(或称 L.Q.方程式)[2,3]表达:δ_F(%)=[C_F(?)~(m~F-m~(?))-1]×100(试棒拉断)或δ_Ⅰ(%)=[C_Ⅰ(?)~(m_Ⅰ-m_0)-1]×100(试棒不拉断)其中 m_0 和 C(C_Ⅰ和 C_F)均为任意常数~**由实测 m-δ关系曲线外推,获得了各试验条件下的 m_0和 m_F 值。由有关数据,根据 L、Q、m-δ方程式计算出来了和不同应变量(δ)相对应的 C(C_Ⅰ和 C_F)值。C-δ关系成近似的直线关系。直线的斜率在“极限应变”处发生突然减小。  相似文献   

4.
连续一级反应动力学参数的计算机模拟   总被引:1,自引:0,他引:1  
在实验测得连续一级反应的中间体最大浓度[B]_(max)和相应的反应时间 t_(max)的基础上,对其动力学方程进行一系列推导,使二元优化变为一元优化,再利用黄金分割法进行计算机模拟,求得 P—硝基氯苯与氰基乙氧甲酰基甲基碳负离子的亲核取代反应中,电子转移和反应中间体 p—硝基氯苯负离子自由基的分解反应速率常数 k_1和 k_2及相应的活化参数,得到了满意的结果.  相似文献   

5.
在本文中,在m-δ~*关系研究的评述[1]的基础上,以σ=k∈~m式为根据,推导出了一个新的关于超塑性的m-δ~*关系式如下: δ_F(%)=[C_F∈~(m_F-m_0)-1]×100(试棒拉断)或δ_I(%)=[C_I∈~(m_I-m_0)-1]×100(拉伸过程中)其中∈为真应变速率(min~(-1)或S~(-1))m为应变速率敏感性指数。C_F=R_F/k_0,C_I=k_I/k_0。应变速率敏感性指数m和系数k均随应变(δ)的增加而变化[1」。m_0(≠0),m_I(m_(I1),m_(I2),m_(I3)……),m_F;k_0(≠0),k_1(k_(I1),k_(I2),K_(I3)……),k_F是分别和试棒的起始延伸率δ_0(=0.00%),拉伸期时各个阶段的延伸率δ_I(δ_(I1),δ_(I2),δ_(I3)……),拉断时的总延伸率δ_F相对应的各个数量。采用国外学者们公开发表的关于六种材料的试验结果进行的验证,是令人满意的。  相似文献   

6.
以棒状和花状ZrO_2为载体,采用化学还原浸渍法制备RuZn-ZrO_2催化剂,利用X线衍射仪(XRD)、N_2吸附-脱附、H_2化学吸附、扫描电子显微镜(SEM)和傅里叶变换红外光谱仪(FT-IR)等表征催化剂的物理化学性质,并考察催化剂在苯选择性加氢反应中的催化性能。结果表明:花状四方相Ru Zn-ZrO_2催化剂表现出最优的苯选择性加氢催化性能,不仅活性最高,而且环己烯选择性也最好,其较高的催化性能主要归因于高的Ru粒子分散度和高的饱和吸水量,这些物化性质依赖于ZrO_2载体的独特形貌和晶相。动力学分析表明,苯加氢生成环己烯的反应速率常数(k_1)与环己烯加氢生成环己烷的反应速率常数(k_2)的比值与环己烯收率呈正相关。  相似文献   

7.
合成了4种Eu(Ⅲ)-β-二酮-氨基多羧酸三元配合物,经元素分析和化学分析测定其组成分别为K_2[Eu(CYDTA)BA)·2H_2O(Ⅰ)、K[Eu(NTA)BA]·2H_2O(Ⅱ)、K_2[Eu(IDA)_2BA](Ⅲ)和K_2[Eu(EDTA)BA](Ⅳ),用红外光谱、差热分析进行了表征.测定了配合物Ⅰ~Ⅳ在室温(298K)和液氮湿度(77K)下的荧光发射光谱,应用群论方法和Judd-Ofelt理论对低温精细光谱作了归属,根据配合物发射峰~5D_0→~7F_J(J=0.1,2和4)的Stark劈裂及强制电偶极f-f跃迁选律推断出配合物中心离子Eu(Ⅲ)的点对称性分别为:Ⅰ,C_(2v);Ⅱ,D_(3h);Ⅲ,C_4;Ⅳ,S_4.从荧光发射强度计算出表征Eu(Ⅲ)-配体共价程度的荧光发射相对强度参数η值(η=1(~5D_0→~7F_2)/I(~5D_0→~7F_1)依次为:1,5.8;Ⅱ,9.4;Ⅲ,11.2;Ⅳ,16.4.研究了配合物Ⅰ~Ⅳ的紫外-可見吸收光谱,测定了其在丙酮/水(1:1)溶液中的超灵敏跃迁振子强度P(~7F_0→~5D_2)分别为:1,0.32×10~(-6);Ⅱ,0.40×10~(-6);Ⅲ,0.52×10~(-6),Ⅳ,0.73×10~(-6).发现Eu(夏)配合物的吸收光谱超灵敏跃迁振子强度P(~F_0→~5D_2)与发射光谱的荧光相对参数η(I~5D_0→~7F_2)/I(~5D_0→~7F_1))之间存在线性关系:P=0.04η+0.066,由此得出Eu(Ⅲ)与配体间键的共价程度是影响超灵敏跃迁强度的主要因素,而与Eu(Ⅲ)点对称性无直接联系.  相似文献   

8.
本文根据中温变换B109催化剂在常压下反应CO H_2O(?)CO_2 H_2动力学实验所得到的二十套测定数据,应用参数估计序贯实验设计的原理优选实验点位置,并进行幂函数型本征动力学方程的参数估值。应用上法求得的中温变换幂函数型动力学方程为Rate=0.1380×10~7exp(-0.2312×10~5/RT)y_(CO)~(0.7701)y_(H_2O)~(-0.0700)y_(CO_2)~(-0.4415)y_(H_2)~(-0.0247)(1-y_(CO_2)y_(H_2)/K_yy_(CO)y_(H_2O))mol/g·h 其中:y_(CO)、y_(H_2O)、y_(CO_2)、y_(H_2)分别为CO、H_2O,CO_2、H_2的湿基摩尔分率;K_y为以组分摩尔分率表示的反应平衡常数。本文提供了一个应用序贯实验设计的方法进行动力学模型参数估值、参数置信区域的估计及其实验点位置优选的动力学研究方法的实例。  相似文献   

9.
本文研究了水—醇(如甲醇、乙醇和正丙醇等)混合溶剂中[Co(N_3)(NH_3)_5]~(2+)与 Fe(Ⅱ)间电子转移反应。其表观速度常数 k_(app)随甲醇、乙醇和正丙醇的摩尔分数X 醇增大(即随混合溶剂介电常数的减小)和酸浓度的增大而增大。反应速度与酸浓度的依存关系,可用[Co(N_3)(NH_3)_5]~(2+)的配体 N_3~-的质子化作用和由此而产生的特殊酸催化作用阐明.[Co(N_3)(NH_3)_5]~(2+)还原反应的表观速度常数 k_(app)可表示为:k_(app)=k_HK_H[H_3O~+]由特殊酸催化而使[Co(N_3)(NH_3)_5]~(2+)被还原反应加速,可认为电子转移是反应的速控步骤。  相似文献   

10.
本文就 K_2S_2O_5—R_2氧化还原引发体系对丙烯酰胺(AM)水溶液聚合的初期反应动力学行为进行了研究,得出动力学方程式。并利用 Arrhanius 方程测定了表观活化能。所得动力学方程为:R_p=k[ox]~(0.9)[rdd]~(0.6)[AM]~(2.1)式中:R_p——聚合初期反应速率(mol/l·min)[ox]——氧化剂浓度(mol/l)[red]——还原剂浓度(mol/l)[AM]——AM 浓度(mol/l)k——速率常数所得活化能为:E=17.4(kcal/mol)  相似文献   

11.
本文用改良湿壁塔研究了纯氨水吸收二氧化碳的速率,并采用氨活度的概念整理实验数据,获得了吸收速率系数的关系式。湿壁塔预先用二氧化碳-水系统和二氧化碳-氢氧化钠溶液系统进行校核。采用改变流量的方法,在层流条件下测定氨水吸收二氧化碳速率。试验研究的范围为:氨浓度1—10N,温度20~25℃,二氧化碳分压近于大气压。试验给果表明H(k_2)~(1/2)随温度变化甚微,这是由于二氧化碳溶解热的影响与反应活化能的影响相互抵消的缘故。而H(k_2)~(1/2)与氨活度α_(BL)密切有关,其关联式为H(k_2)~(1/2)=(8.797 0.3441α_(BL)-0.005358α_(BL)~2)×10~(-4) 由此可得溶解度系数H与氨活度的关系为H/H~0=0.03912α_(BL)-6.0907×10~(-4)α_(BL)~2 1  相似文献   

12.
通过实验研究证明:N_(NH)_4~+→N_(NO)_2~-→N_(NO)_3~-,即三氮迁移转化过程中的质量不守恒问题很显著。因而建立这种三氮转移动力学耦合数值模型用于地下水污染预测是不可靠的。较好的途径是依据水文地球化学条件不同而选择NH_4~+或NO_3~-弥散-吸附迁移模型,以及NH_4~+→NO_3~-转移模型用于地下水污染预测。  相似文献   

13.
对福建平和大望山等铅、锌、银(金)矿床的氧、氢、硫、铅稳定同位素分析测定结果,脉石矿物氧同位素δ~(18)O(‰)=+2.54~+10.05,其中包裹体氢同位素δD_(H_2O)(‰)=-46.6~-111.8矿石硫同位素δ~(34)Si(‰)=-3.60~+4.90,铅同位素~(206)Pb/~(204)Pb=18.3817~18.8747,~(207)Pb/~(204)Pb=15.5932~15.8328,~(206)Pb/~(204)Pb=38.5152~39.9802.据硫、铅同位素研究认为,矿质来自花岗闪长岩浆:氢、氧同位素研究认为,成矿溶液主要为演化的混合型初始岩浆水(MCIMW),局部有大气降水或演化的大气降水的混入,并讨论了水/岩作用以及矿床所在地区地质地球化学的某些特点。  相似文献   

14.
在170℃,ε=7.5×10~(-2)min~(-1)(平均)和200℃,ε=3×10~(-2)min~(-1)(平均)的条件下,测到的Zn—22%Al共析合金超塑性的m-C-δ或m-k-δ关系曲线(简称m-δ关系曲线)属于m_L=m_(max)型。当δ_O<δ_L<δ_F时,属于基本形式。可根据δ_L对于C值进行“规划”(令C=C_1~δL)得到L·Q·m-δ“规划”方程式如下: δ(%)=[C_1~δLε~(m-m0)-1]×100 当δ=δ_n(=0.00%)时,m=m_0,C=C_0=k_0/k_0=1。当δ=δ_Ⅰ(δ_(Ⅰ1),δ_(Ⅰ2),δ_(Ⅰ3),……)时,m=m_Ⅰ(m_(Ⅰ1),m_(Ⅰ2),m_(Ⅰ3),……),C=C_Ⅰ(C_(Ⅰ1),C_(Ⅰ2),C_(Ⅰ3)……)=k_Ⅰ(k_Ⅰ(k_(Ⅰ1),k_(Ⅰ2),k_(Ⅰ3),……)/k_0当δ=δ_F时,m==m_F,C=C_F=k_F/k_0。ε为应变速率(min~(-1))。在两种试验条件下的δ_L值分别为100%(170℃,ε=7.5×10~(-2)min~(-1))和45%(200℃,ε=3×100~(-2)min~(-1))。C_1~(100)-δ和C_1~(45)-δ两个关系均成近似的直线上升。其斜率分别在100%和45%应变(极限应变)处突然减小。当δ_L=δ_0=0.00%时,δ_L在曲线上消失,属于本类型曲线的特例。特例曲线表现为一直下降,直到断裂(单纯的下降式),可表示为:(m_L=m_(max))=m_0>m_F。因C=C_1~δL=C_1~(δ0)=1,故不存在C-δ关系问题[2]。对于在变形过程中的显微组织的变化进行了相对比较。发现随着应变量的增大,晶粒不断粗化,但最后的粗化程度仍处于超塑性所要求的范围内,故合金仍显示高的超塑性。  相似文献   

15.
配合离子交换法吸附钽(Ⅴ)的性能及动力学研究   总被引:3,自引:0,他引:3  
本文研究了D-301大孔阴离子交换树脂从草酸水溶液中吸附钽草酸配合物的性能和动力学.实验结果表明,在[(NH_4)_2C_2O_4]=0.1267mol/L,[K_2S_2O_8]=0.0236mol/L,[Ta]=7.8×10~(-5)mol/L,pH=2.5~3.5条件下,钽的吸附率有一最大值.测得Freundlish常数k=2.14,吸附速度常数k_(30)°c=2.0×10~(-4)Sec~(-1),吸附活化能Ea=35.3kJ/mol,钽的饱和吸附容量C_(Ta)=168mg/g干树脂.  相似文献   

16.
本文研究了双酚A二醋酯与间苯二甲酸在247℃、257℃和267℃下的熔融缩聚动力学。缩聚产物的数均聚合度随时间的变化,是通过以标准氢氧化钠溶液滴定逸出的醋酸量换算而得。以Runge-Kutta法求得动力学微分方程组的数值解。再以不同的单体与多体反应速率常数和酯交换反应速率常数值代入方程组,用计算机求得模拟曲线,由模拟曲线与实际曲线的比较提出了该缩聚反应的机理及有关各基元反应速率常数之比分别为k_(11)/k_(mn)=0.4211,k_(1n)/k_(nm)=1,k_(1/n)k_(mn)=0.05,说明该缩聚反应为具有酯交换反应的三速率常数的反应过程。  相似文献   

17.
用摩尔比为2:1的邻香草醛(C_8H_8O_3)与L-胱氨酸(C_6H_(12)N_2O_4S_2)反应,合成了一种新的双Schiff碱化合物--双{2-[(3-巯基丙酸钠)-2-亚胺基-甲基]-6-甲氧基-苯酚}(OVCS)。通过元素分析、红外光谱、核磁共振等手段对其组成和结构进行了表征,确定其化学式为Na_2(C_(22)H_(22)N_2O_8S_2),采用TAM air微量热仪测定了新合成的Schiff碱化合物(OVCS)在305.15 K时对粟酒裂殖酵母细胞作用的产热曲线;根据产热曲线计算了在OVCS作用下,粟酒裂殖酵母细胞生长代谢的最大发热功率p_(max)、速率常数k、传代时间tG、抑制率I和半抑制浓度C_(I,50)等热动力学参数。通过实验可以发现随着OVCS浓度的增加,粟酒裂殖酵母细胞的生长代谢速率常数k、生长代谢的总热效应Q_(total)、最大发热功率p_(max)均减小,抑制率I、达到生长代谢最大功率所需时间t_(max)、传代时间tG均增加等规律,半抑制浓度C_(I,50)为35.99 mg/L(或9.62×10~(-2)mol/L)。实验结果表明,OVCS对粟酒裂殖酵母细胞有抑制作用,且浓度越大,抑制作用越强。  相似文献   

18.
Pulsed laser photolysis/laser-induced fluorescence (LP-LIF) is utilized to measure rate constants for C_2(a~3(multiply from)_u) reactions with NO, N_2O, O_2, H_2 and NH_3. Multiphoton dissociation of C_2CI_4 at 266 nm is employed for the generation of C_2(a~3(multiply from)_u) radicals. The C_2(a~3(multiply from)_u) concentration is monitored by the fluorescence of the (0, 0) band of the (d~3(multiply from)_g←→a~3(multiply from)_u) transition at 516.5 nm. C_2(a~3(multiply from)_u) removal rate constants for the reactions are determined as k_(NO)=(5.46±0.10)×10~(-11)cm~3molecule~(-1)s~(-1), k_(N_2O)=(1.63±0.20)×10~(-13)cm~3molecule~(-1)s~(-1), k_(N_2O)=(1.58±0.16)×10~(-11)cm~3molecule~(-1)s~(-1), k_(O_2)=(5.92±1.00)×10~(-14)cm~3molecule~(-1)s~(-1), k_(H_2)<1.0×10~(-14)cm~3molecule~(-1)s~(-1). Based on the data analysis and theoretical calculation, we suggest that the C_2(a~3(multiply from)_u) reactions with H_2 and NH_3 proceed via the hydrogen abstraction mechanism, barriers exist at the entr  相似文献   

19.
以改性骨架镍为催化剂,二甲基甲酰胺为溶剂研究了3,3′-二硝基-4,4′-二氨基二苯醚的加氢反应动力学。结果表明,在转化率为80%以前有良好的反应选择性,副反应可忽略不计。研究了反应速度与温度、浓度、氢压等参数的关系。得知在转化率为80%以前原料的转化速率对氢分压为0.7级,对原料的浓度为零级。在温度为90—110℃,氢分压为3—30 at,原料浓度为0.4—1.2mol/l,催化剂用量为8 g/l的条件范围内可用式dc/dt=K_(H_2)~(0.7)表示。反应速度与温度的关系符合Arrhenius方程式。求得活化能为14.5 kcal/mol。同时,对高转化率的情况也进行了讨论。  相似文献   

20.
本文采用改良湿壁塔进行了低碳化度氨水吸收二氧化碳速率的研究。试验采用的溶液总氨浓度为2~13N,碳化度为0.15~0.45,溶液的离子强度为0.876~3.76 kion/m~3。实验在假一级反应领域内进行,在前报的基础上整理了数据,得出了如下的结论: (1) H2~(1/k_2)与氨活度及离子强度的关系为1gH2~(1/k_2)=1gf(a_(Bl))-0.02013 I其中f(a_(Bl))=(8.797 0.3441 a_(Bl)-0.005358 a_(Bl)~2)×10~(-4) (2) 二级反应速度常数k_2与离子强度及温度的关系为1gk_2=10.20 0.04364 I-2280/T (3) 二氧化碳的溶解度系数的修正式为1gH=1gf(a_(Bl))-5.10-0.04195 I 1140/T 本实验的实验值与模型值的最大误差为10%,平均误差在5%以内。实验所得的k_2和H的修正式可望用于工业碳化塔的设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号