共查询到20条相似文献,搜索用时 62 毫秒
1.
针对管道泄漏检测与定位方法存在负压波传播衰减、噪声干扰大、数据融合率低等3种问题,提出了基于鲸鱼优化算法(whale optimization algorithm, WOA)的变分模态分解(variational modal decomposition, VMD)和改进的自适应加权融合算法(improved adaptive weighted fusion, IAWF)的管道泄漏检测与定位方法。该方法提出了三传感器泄漏检测与定位模型,并利用抗干扰能力强的WOA-VMD算法对原始信号进行消噪处理;然后采用小波分析求消噪信号的奇异点,进一步求出压力变送器检测到负压波信号的时间差;在此基础上,利用改进的自适应加权融合算法对多传感器数据进行融合,最终得到泄漏点的实际位置。实验结果表明:该方法可以有效地滤除噪声分量,获得更精确的融合结果,定位精度高,相对定位误差可以控制在1%以内,为管道泄漏检测与定位提供了一种新方法。 相似文献
2.
针对天然气管道发生泄漏时信号受到强烈的噪声干扰难以准确提取有用信号的问题,提出一种变分模态分解(VMD:Variational Mode Decomposition)结合变点理论(SCT:Statistical Change-point Theory)和广义形态滤波(GMF:Generalized Morphologi... 相似文献
3.
针对轴承故障振动信号的非线性、非平稳性的特点,而且故障信号经常被各种噪声、干扰所淹没,提出了一种基于局部均值分解(local mean decomposition,LMD)与自适应多结构元素多尺寸差值形态滤波器相结合的方法。原始故障信号先经过局部均值分解得到若干乘积函数(product function,PF)分量,然后采用峭度值准则,选取峭度值最大的PF分量,再将其经过自适应多结构元素多尺寸差值形态滤波器进行滤波解调,最后解调结果进行频谱分析,提取故障特征。为了体现其可行性和优越性,与包络解调、LMD-形态闭运算和LMD-形态差值滤波三种方法进行了比较,仿真信号和实测轴承故障信号的分析结果表明,它具有更强的噪声抑制和脉冲提取能力,可以有效地提取滚动轴承故障特征信息,实现故障的精确诊断。 相似文献
4.
基于形态滤波的脉搏波信号基线漂移消除方法研究 总被引:1,自引:0,他引:1
脉搏中蕴涵着大量的人体生理病理信息,因此分析脉搏信号成为诊断亚健康状态的重要手段.但是由于呼吸运动和身体移位导致了脉搏信号的基线漂移,影响了诊断结果的正确性.针对基线漂移的去除需求,文章提出了一种基于形态学滤波的方法,该方法通过采用2种不同宽度的结构元素,对脉搏波信号进行广义形态开闭和闭开滤波,分离出基线漂移.实验结果... 相似文献
5.
针对冲击噪声环境下多用户检测误码率高的问题,提出一种基于混合鲸鱼优化的鲁棒多用户检测算法。该算法首先利用基于非线性控制策略的改进鲸鱼优化算法,加速寻优算法迭代过程的收敛;再利用自适应差分进化算法丰富算法种群个体信息,增强优化算法的全局收敛性;同时将适应度较好的个体信息保存到集合中,以保证下一次迭代寻优方向的可靠性,最终实现对最优解位置的快速解算。仿真结果表明,基于本文算法设计的多用户检测器相比采用遗传算法、差分进化算法,以及鲸鱼优化算法的多用户检测器寻优迭代次数更少,且误码率低。 相似文献
6.
煤矿安全生产的关键是矿工,而情绪是影响矿工的重要因素,所以有必要对矿工的情绪进行识别。近年来,基于脑电的情绪识别受到了大量的关注,但由于脑电信号微弱,易受干扰,从而降低了情绪识别的精度。针对这一问题,提出优化变分参数与改进小波软阈值重构滤波算法。首先,利用乌燕鸥算法优化变分模态分解的参数,得到一组优化的变分模态分量。接着,通过相关系数差值比的判断条件来区分变分模态的有效分量和含噪分量。然后利用改进的小波软阈值对含噪分量进行分解和重构,得到去噪分量。最后,将去噪分量与有效分量重构,实现所提的滤波算法。结果表明:相比于VMD法、优化参数VMD和小波硬阈值法、优化参数VMD和小波软阈值法,所提滤波算法的信噪比平均提高了3.284 7 dB,均方根误差平均降低了0.069 5,滤波效果更优。 相似文献
7.
薛双青;贺东东 《西安科技大学学报》2021,(3):516-523
为了解决几种常用的方法在医学超声波图像处理方面存在的细节信息保留欠佳和去噪效果不明显的2个缺陷,提出了一种将二维变分模态分解和双边滤波相结合的超声图像去噪的新方法。该方法主要是先通过二维变分模态分解将图像分解成一系列不同中心频率的模态分量,然后利用峰值信噪比和归一化均方误差作为筛选有效模态分量的指标系数,并对有效模态分量再进行双边滤波处理,最后重构处理后的有效模态分量,从而去除图像噪声。结果表明:由该方法得到的峰值信噪比最大且高出其它的去噪方法大约0.2~1.4; 均方根误差最小且低于其它的去噪方法大约0.3~1.7。由此说明,该方法在去除图像中的噪声和保护细节信息这2个方面都优于其它常用的方法,随着噪声强度增强,该算法去噪效果更加明显。 相似文献
8.
针对非连续、非平稳语音信号中含有噪声的问题,提出一种基于参数优化的变分模态分解去噪算法.首先,利用灰狼优化算法搜寻变分模态分解算法的最优分解参数组合分解模态数K和惩罚因子α,通过使用获得的参数组合分解语音信号以获得K个特征模态函数分量IM F;其次,利用相关系数选择有效模态分量,并用小波阈值处理无效模态分量;最后,重构... 相似文献
9.
油气管道信号泄漏检测易受噪声影响,因此去噪成了关键问题.为了提高对油气管道信号的去噪效果,提出了一种基于Savitzky-Golay平滑滤波、变分模态分解(VMD: Variational Mode Decomposition)和频域奇异值分解(SVD:Singular Value Decomposition)去噪相结... 相似文献
10.
针对在大量数据背景下云计算资源调度模型存在调度效率低、分配不合理等问题,提出一种基于改进鲸鱼优化算法(m-WOA)的云计算资源调度方法。提出了云计算资源调度模型,针对基本鲸鱼优化算法存在迭代后期种群多样性减弱、易陷入局部最优等不足,提出使用Tent混沌反向学习策略来增强种群多样性;并使用精英随机组合策略平衡算法开发和探索能力。将改进后的m-WOA算法用于数值仿真实验和云计算资源调度模型求解。实验结果表明,m-WOA具有更好的收敛精度和更强的稳定性;m-WOA能有效减少云计算完成时间和能源消耗,并提供更合理的资源调度分配方案,从而提升云计算资源利用率。 相似文献
11.
为了在复杂多变的环境中有效提取目标辐射噪声的特征信息,提出一种基于优化变分模态分解(variational mode decomposition,VMD)和斜率熵的目标辐射噪声特征提取方法。采用蝴蝶优化算法(Butterfly Optimization Algorithm,BOA),提出基于BOA的参数优化VMD算法(BOA-VMD),实现VMD最佳参数组合的自适应选取,从而对四类辐射噪声信号进行分解,得到一定数量的固有模态函数(intrinsic mode functions,IMF)。计算各IMF分量的斜率熵作为特征值,通过仿真实验和实际噪声信号进行实验分析,并与散布熵、波动散布熵和排列熵三种特征相比较。结果表明:本文提出的基于BOA-VMD与斜率熵的特征提取方法可以实现不同种类目标的分类识别,并且在单特征和多特征条件下均具有最高识别率,而且随着提取的特征数量的增加,最高识别率也会随之增加。 相似文献
12.
针对三相交流电输电线路的故障信号分解存在误差,影响故障分类准确率的问题,为了提高故障信号分解的精细程度以及分类准确率,现基于故障电压信号提出一种改进的变分模态分解(VMD) -排列熵(PE)的故障特征提取的分类方法;通过 MATLAB / Simulink 搭建故障仿真模拟线路,生成故障数据集,为了得到最理想以及分解效果最好的组合,通过鲸鱼算法(WOA)优化对故障电压信号 VMD 的惩罚参数以及分解的个数进行求最优解组合,增加了各个分量分解的精度,采用同一变量法进行对比实验分析,分别利用 VMD 以及 EMD 对故障电压进行分解得到本征模态分量(IMF),结合排列熵(PE)对各个 IMF 进行计算,得到相应的特征向量,作为分类的依据,带入到高斯优化支持向量机(SVM)的决策树(DT)进行故障分类验证;通过仿真实验证明改进的 VMD-PE 对故障电压分解更加的具有可分辨性,同时相较于 EMD-PE,识别率有很大的提升,极大程度的避免了混沌情况的发生,故障识别的准确率可高达 96. 7%,可以作为分解以及分类的依据。 相似文献
13.
国家电网物资采购管理水平不断提高,线上采购流程逐步完善,但仍存在由于采购计划预估不准导致招投标过程中,供应商利用招投标总标包机制进行价格博弈而造成电网公司采购成本增加,因此,建立准确有效的电力物资需求预测模型具有重要意义。针对电力物资序列的非稳定性、波动性和间歇性特点,提出一种基于参数优化变分模态分解(variational mode decomposition, VMD)与长短时记忆神经网络(long short-term memory, LSTM)的电力物资需求预测方法,选取国网电商专区平台的典型电力物资,采用鲸鱼优化算法(whale optimization algorithm, WOA)参数优化的VMD对原始序列进行模态分解,将分解获得的各模态分量分别构建LSTM模型,最后将各模态的预测值叠加重构为电力物资的预测值。实验结果表明:所提电力物资需求预测方法较LSTM、EMD-LSTM、VMD-LSTM、PSO-VMD-LSTM、SSA-VMD-LSTM有更高的准确率,对电网物资采购预测具有一定实际意义。 相似文献
14.
为了直接从结构响应提取损伤敏感参数,对激励未知情况下的结构损伤模式进行识别,提出了基于小波包分解-局部均值分解方法(wavelet packet decomposition-local mean decomposition,WPD-LMD)和排列熵的结构损伤检测方法.该方法首先对结构振动响应进行小波包分解,将振动信号分解为一系列窄带信号,然后对窄带信号进行局部均值分解,能有效提取低能量分量.通过计算损伤前后分量信号的排列熵,对结构损伤进行了检测,最后通过计算测试数据和样本数据之间的相对排列熵,对损伤模式进行了识别.实验分析结果表明,所提出的方法能有效地对结构损伤进行识别. 相似文献
15.
16.
为保证微电网可靠并网,针对风光随机出力引起的有功功率波动问题,利用混合储能系统(HESS)进行有效平抑。为充分发挥不同类型储能的特性,实现HESS功率的精确分配,提出一种基于WOA-VMD双层分解的混合储能功率分配策略。采用移动平均算法确定并网功率和HESS所需平抑的波动功率,并利用WOA-VMD分解风光波动功率。考虑到VMD分解余量可能含有丰富信息,再对余量进一步分解,完成HESS的初级功率分配。采用模糊控制优化储能设备的荷电状态(SOC),完成HESS功率的二次修正。算例分析表明,文中所提策略能够对风光波动功率进行自适应分解,实现HESS功率的合理分配,有效平抑风光功率波动,保证微电网可靠并网;并且维持储能SOC处于理想范围,避免储能设备过度充放电,确保HESS安全稳定运行。 相似文献
17.
为解决变分模态分解在地震数据去噪中依赖人工经验,模态分解和去噪效果具有一定随机性和偶然性的问题,提出基于频域奇异值分解信噪比估计的参数优化方法。该方法在参数范围内以较高的估计信噪比为评价参数对模态分量数目与有效模态进行选取,自适应寻找去噪最有效的参数,从而避免主观选取参数的随机性,改善去噪效果。仿真模型实验表明:估计信噪比与真实信噪比的误差为正相关关系,能够有效反映地震数据中噪声程度,所估计信噪比可以作为去噪效果的评价参数。通过仿真模型和实际地震数据对方法进行验证,结果表明基于估计信噪比参数优化后的变分模态分解方法能够有效压制噪声、凸显同相轴信息。 相似文献
18.
云相似度测量的变分模态分解去噪方法 总被引:1,自引:0,他引:1
为区分VMD( Variational Mode Decomposition) 分解后高低频段模态分量,提高VMD 算法的去噪效果,
提出一种基于云相似度测量的VMD 去噪方法。首先,对信号进行VMD 分解,通过计算各个模态分量与信号之
间的云相似度值,区分有效分量与噪声分量,然后对噪声分量进行小波滤波,最后将滤波后的分量与有效分量
进行重构。通过仿真和实际实验,将提出的去噪法与基于相关系数的VMD 去噪法和基于互信息的VMD 去噪
法对噪声信号进行处理,该方法去噪后所得信号信噪比相对较高,为28. 214 1 dB,均方误差相对较低,为
6. 12 × 104 ,验证了该方法去噪效果的优越性和对油气管道泄漏信号去噪的可行性。 相似文献
19.
为了准确的实现电梯故障诊断,提出基于AO-VMD-BF和多模型融合的电梯故障诊断。首先,利用天鹰优化算法(aquila optimizer algorithm, AO)优化的变分模态分解(variational mode decomposition, VMD)将信号分解为多个模态分量,并利用皮尔逊相关系数去除虚假分量,针对剩余信号仍有噪声的问题,通过巴特沃斯滤波(butterworth filter, BF)进行二次去噪,对去噪筛选后的模态分量子序列进行重构即可得到去噪后的振动信号。然后提取时域、频域和熵特征,构成多域特征向量集。最后建立以卷积神经网络(convolutional neural network, CNN)、随机森林(random forest, RF)、支持向量机(support vector machine, SVM)和自适应提升(adaptive boosting, AdaBoost)为基模型,极限梯度提升树(extreme gradient boosting, XGBoost)为元分类器的Stacking集成学习的电梯故障诊断模型。通过实验结果分析表明,所提的方法能够有效提取电梯轿厢振动信号中的故障特征,对电梯故障进行准确、有效的诊断。 相似文献
20.
针对贺兰山岩画提出了一种新的滤波算法,该方法基于混合多尺度和非局部平均滤波的思想处理噪声图像.首先,将RGB彩色空间转换到L*a*b*颜色空间;其次,对L*a*b*颜色空间的每个分量进行多层小波变换;然后通过2种不同的策略处理粗尺度的小波系数,即对低频系数进行非局部平均滤波,对高频系数进行阈值处理,并对处理后的粗尺度小波系数进行重构得到上一层的低频图像;之后,对每一个尺度继续上面的操作直到得到最细尺度的系数,并对完全重构的图像进行非局部平均滤波;最后,将处理结果转换到通常的RGB彩色空间.大量的实验用于讨论参数的选取和算法的有效性.结果表明,该方法在计算效率、鲁棒性和视觉效果方面均优于已有的混合高斯尺度方法、多尺度双边滤波方法、非局部平均滤波方法. 相似文献