共查询到19条相似文献,搜索用时 78 毫秒
1.
针对管道泄漏检测与定位方法存在负压波传播衰减、噪声干扰大、数据融合率低等3种问题,提出了基于鲸鱼优化算法(whale optimization algorithm, WOA)的变分模态分解(variational modal decomposition, VMD)和改进的自适应加权融合算法(improved adaptive weighted fusion, IAWF)的管道泄漏检测与定位方法。该方法提出了三传感器泄漏检测与定位模型,并利用抗干扰能力强的WOA-VMD算法对原始信号进行消噪处理;然后采用小波分析求消噪信号的奇异点,进一步求出压力变送器检测到负压波信号的时间差;在此基础上,利用改进的自适应加权融合算法对多传感器数据进行融合,最终得到泄漏点的实际位置。实验结果表明:该方法可以有效地滤除噪声分量,获得更精确的融合结果,定位精度高,相对定位误差可以控制在1%以内,为管道泄漏检测与定位提供了一种新方法。 相似文献
2.
针对天然气管道发生泄漏时信号受到强烈的噪声干扰难以准确提取有用信号的问题,提出一种变分模态分解(VMD:Variational Mode Decomposition)结合变点理论(SCT:Statistical Change-point Theory)和广义形态滤波(GMF:Generalized Morphologi... 相似文献
3.
针对轴承故障振动信号的非线性、非平稳性的特点,而且故障信号经常被各种噪声、干扰所淹没,提出了一种基于局部均值分解(local mean decomposition,LMD)与自适应多结构元素多尺寸差值形态滤波器相结合的方法。原始故障信号先经过局部均值分解得到若干乘积函数(product function,PF)分量,然后采用峭度值准则,选取峭度值最大的PF分量,再将其经过自适应多结构元素多尺寸差值形态滤波器进行滤波解调,最后解调结果进行频谱分析,提取故障特征。为了体现其可行性和优越性,与包络解调、LMD-形态闭运算和LMD-形态差值滤波三种方法进行了比较,仿真信号和实测轴承故障信号的分析结果表明,它具有更强的噪声抑制和脉冲提取能力,可以有效地提取滚动轴承故障特征信息,实现故障的精确诊断。 相似文献
4.
基于形态滤波的脉搏波信号基线漂移消除方法研究 总被引:1,自引:0,他引:1
脉搏中蕴涵着大量的人体生理病理信息,因此分析脉搏信号成为诊断亚健康状态的重要手段.但是由于呼吸运动和身体移位导致了脉搏信号的基线漂移,影响了诊断结果的正确性.针对基线漂移的去除需求,文章提出了一种基于形态学滤波的方法,该方法通过采用2种不同宽度的结构元素,对脉搏波信号进行广义形态开闭和闭开滤波,分离出基线漂移.实验结果... 相似文献
5.
6.
煤矿安全生产的关键是矿工,而情绪是影响矿工的重要因素,所以有必要对矿工的情绪进行识别。近年来,基于脑电的情绪识别受到了大量的关注,但由于脑电信号微弱,易受干扰,从而降低了情绪识别的精度。针对这一问题,提出优化变分参数与改进小波软阈值重构滤波算法。首先,利用乌燕鸥算法优化变分模态分解的参数,得到一组优化的变分模态分量。接着,通过相关系数差值比的判断条件来区分变分模态的有效分量和含噪分量。然后利用改进的小波软阈值对含噪分量进行分解和重构,得到去噪分量。最后,将去噪分量与有效分量重构,实现所提的滤波算法。结果表明:相比于VMD法、优化参数VMD和小波硬阈值法、优化参数VMD和小波软阈值法,所提滤波算法的信噪比平均提高了3.284 7 dB,均方根误差平均降低了0.069 5,滤波效果更优。 相似文献
7.
针对非连续、非平稳语音信号中含有噪声的问题,提出一种基于参数优化的变分模态分解去噪算法.首先,利用灰狼优化算法搜寻变分模态分解算法的最优分解参数组合分解模态数K和惩罚因子α,通过使用获得的参数组合分解语音信号以获得K个特征模态函数分量IM F;其次,利用相关系数选择有效模态分量,并用小波阈值处理无效模态分量;最后,重构... 相似文献
8.
油气管道信号泄漏检测易受噪声影响,因此去噪成了关键问题.为了提高对油气管道信号的去噪效果,提出了一种基于Savitzky-Golay平滑滤波、变分模态分解(VMD: Variational Mode Decomposition)和频域奇异值分解(SVD:Singular Value Decomposition)去噪相结... 相似文献
9.
针对在大量数据背景下云计算资源调度模型存在调度效率低、分配不合理等问题,提出一种基于改进鲸鱼优化算法(m-WOA)的云计算资源调度方法。提出了云计算资源调度模型,针对基本鲸鱼优化算法存在迭代后期种群多样性减弱、易陷入局部最优等不足,提出使用Tent混沌反向学习策略来增强种群多样性;并使用精英随机组合策略平衡算法开发和探索能力。将改进后的m-WOA算法用于数值仿真实验和云计算资源调度模型求解。实验结果表明,m-WOA具有更好的收敛精度和更强的稳定性;m-WOA能有效减少云计算完成时间和能源消耗,并提供更合理的资源调度分配方案,从而提升云计算资源利用率。 相似文献
10.
针对标准鲸鱼优化算法在处理复杂优化问题时出现搜索精度低和易出现早熟收敛等缺点,提出一种随机调整控制参数的改进鲸鱼优化算法(EWOA)。受粒子群优化算法中惯性权重的启发,利用随机分布的方式调整控制参数,以平衡鲸鱼优化算法的全局搜索和局部搜索能力。对当前最优个体执行服从正态分布的变异扰动,以避免算法出现早熟收敛现象。此外,采取佳点集方法替代随机方法产生初始个体以提高算法的全局收敛速度。6个标准测试函数的仿真实验结果表明EWOA能有效处理高维复杂优化问题。 相似文献
11.
针对制造系统中考虑路径冲突的AGV(automated guided vehicles)与机器集成调度问题,提出一种基于时间窗和Dijkstra算法的离散型鲸鱼优化算法。首先,以最小化最大完工时间为目标,建立AGV与机器集成调度的数学模型,并采用一种三段式编码实现AGV和机器的集成编码,建立连续空间与离散空间之间的映射关系;然后,为了保证初始种群的质量和多样性,设计一种结合混沌映射和对立学习的扩展型GLR(global, local, random)种群初始化方法;运用Levy飞行算子和阈值重启操作进一步提高算法的全局搜索能力;最后,为了提高算法的局部搜索能力,引入结合问题特点的变邻域搜索算法。标准算例仿真实验和柔性仿真实验证明了该算法解决AGV和机器集成调度问题的可行性和优越性。 相似文献
12.
针对包含多种可再生能源的冷热电联供型微网系统的能量优化问题,为了优化其运行过程的经济效益和环境效益,本文提出一种基于改进鲸鱼优化算法的多时间尺度下能量优化方法,首先根据长短期记忆网络(Long Short Term Memory,LSTM)预测得到的可再生能源出力和负荷需求预先制定调度规划,然后以此预测数据为基础,采用改进鲸鱼优化算法调整可控设备出力,优化微网系统的运行成本和固定成本。将该方法应用于某楼宇冷热电联供型微网,结果表明,在满足负荷需求的基础上使得经济成本平均降低4.03%且经济效益更优。 相似文献
13.
畜禽养殖废弃物的合理处置,是农村生态环境治理与污染防治的关键点。为解决畜禽养殖废弃物的运输路径问题,提出一种改进鲸鱼优化算法的车辆路径优化方法。首先,在车辆路径优化问题的基础上,建立以总路程最小化为目标的畜禽养殖废弃物运输路径优化模型;其次,结合离散型问题特征和鲸鱼优化算法的寻优思想,提出改进鲸鱼优化算法。引入升序排列(ranked order value, ROV)转换机制使该算法能够求解离散问题,对每次迭代结果进行聚类分析,将优秀个体所在类依次进行基于位置的交叉(position-based crossover, PBX)操作和逆序变异操作,同时保证了种群的多样性和算法的求解效率;最后,对9个Solomon算例和1个实例进行仿真实验,并与改进粒子群优化算法、改进灰狼优化算法和改进蚁群算法进行对比。结果表明,改进鲸鱼优化算法在9个案例中均优于其他算法,在最复杂的RC103案例中,求解结果相较于其他算法至少提高14.64%,体现了改进鲸鱼优化算法有更高的求解精度和稳定性;对于畜禽废弃物运输实例仿真实验,改进鲸鱼优化算法比其他算法分别提高4.9%、6.5%和43.7%,证明本文算法能够有... 相似文献
14.
码垛机器人在运行轨迹过程中所消耗的时间直接影响到了其工作效率,针对码垛机器人的轨迹规划的时间问题,提出了一种改进的鲸鱼优化算法对时间进行优化。在基础的鲸鱼优化算法基础上,利用混沌映射初始化种群,引入自适应的权重和改进收敛因子,以提高算法的求解精度、收敛速度和全局搜索能力。首先,根据 D-H 参数法建立机器人的运动学模型;其次,在关节空间中利用3-5-3次多项式插值函数对机器人末端执行器经过的路径点进行规划,然后采用改进的鲸鱼优化算法对时间进行优化。最后通过 MATLAB软件进行效果仿真和对比。结果表明,与其它同类的算法相比,改进的鲸鱼优化算法的求解精度更高,收敛速度更快。将该方法与轨迹优化结合,与未采用算法优化的3-5-3多项式轨迹规划所需要的运行时间相比缩短了22.46%,且各个关节轨迹平稳连续,验证了该轨迹规划方法的有效性。 相似文献
15.
国家电网物资采购管理水平不断提高,线上采购流程逐步完善,但仍存在由于采购计划预估不准导致招投标过程中,供应商利用招投标总标包机制进行价格博弈而造成电网公司采购成本增加,因此,建立准确有效的电力物资需求预测模型具有重要意义。针对电力物资序列的非稳定性、波动性和间歇性特点,提出一种基于参数优化变分模态分解(variational mode decomposition, VMD)与长短时记忆神经网络(long short-term memory, LSTM)的电力物资需求预测方法,选取国网电商专区平台的典型电力物资,采用鲸鱼优化算法(whale optimization algorithm, WOA)参数优化的VMD对原始序列进行模态分解,将分解获得的各模态分量分别构建LSTM模型,最后将各模态的预测值叠加重构为电力物资的预测值。实验结果表明:所提电力物资需求预测方法较LSTM、EMD-LSTM、VMD-LSTM、PSO-VMD-LSTM、SSA-VMD-LSTM有更高的准确率,对电网物资采购预测具有一定实际意义。 相似文献
16.
17.
为解决鲸鱼优化算法中收敛速度慢和寻优精度低等问题,提出一种基于Iterative映射和非线性拟合的鲸鱼优化算法(NWOA)。首先,该算法利用了Iterative映射对鲸鱼种群初始化,保证初始种群的多样性;其次,采用非线性拟合的策略对收敛因子和惯性权重进行改进,以平衡算法的全局勘测能力和局部开发能力。通过对13种函数进行仿真实验,从均方差和平均值的角度分析,改进后算法寻优精度显著提高,且稳定性较强。实验结果表明NWOA与传统的鲸鱼优化算法相比,收敛速度明显加快。 相似文献
18.
曹昌勇;方杰 《齐齐哈尔大学学报(自然科学版)》2013,(2):12-16
主要研究基于Wiener自适应滤波LMS算法与RLS算法在语音信号去噪中的应用。对语音信号与噪声在相关和不相关、平稳和不平稳这四种情况下,分别采用RLS和LMS算法对语音信号进行去噪分析。研究发现,不管信号与噪声处于上面四种情况的任何一种,RLS算法比较优越,而且在处理相关和非平稳的情况下优势更大;对于不相关和平稳的情况,LMS算法的效果较好。 相似文献
19.
针对微电网可再生能源不稳定性对电网造成的冲击,合理优化配置分布式能源以实现更为经济和环保的目标。提出了改进的鲸鱼算法,通过tent映射提高了初始种群的均匀程度,建立改进的精英反向学习方法提高算法跳出局部最优解的能力,通过自适应参数优化调节鲸鱼算法搜索策略的选取,并且选取阿基米德螺线替换原有的螺旋收缩方式,加强局部搜索能力,采用多种基准函数验证了算法性能上的提高,并以污染治理费用和运行费用作为目标函数,针对多种电源类型的微电网进行优化,通过仿真试验对比其他算法验证改进鲸鱼算法的有效性和实用性。 相似文献