共查询到20条相似文献,搜索用时 15 毫秒
1.
通过分析用于室内定位的传统Monte Carlo算法存在的问题,对MonteCarlo定位算法更新模型进行了改进。改进算法具有更有效的采样、更强的稳定性、更少的计算量等优势。通过试验发现改进算法比传统算法具有更高的定位精度。 相似文献
2.
《广西师范大学学报(自然科学版)》2020,(2)
在处理不平衡数据集时,为了降低类重叠对分类效果的影响,避免过采样造成的过拟合现象,以及欠采样造成的信息丢失问题,本文提出一种基于欠采样与属性选择的多决策树方法UAMDT(multi-decision tree based on under-sampling and attribute selection)。其首先利用Tomek link欠采样与集成欠采样两种技术相结合对数据进行处理,并获得多个平衡子集;然后在每个平衡子集上构建单决策树,采用结合信息增益和基尼指数的混合属性度量作为属性选择标准,选择最优属性作为每棵单决策树的根节点的分裂属性;最后将单决策树进行集成构建多决策树。通过对10个不平衡数据集的多个评估指标进行实验,验证了本文算法的有效性和可行性。 相似文献
3.
针对无线射频识别系统在识别过程中的多标签硅技问题,对现在有的Aloha系列算法及二进制搜索系列算法进行了优劣分析,捉出了一种改进的防碰撞算法.通过减少算法的搜索次数和系统的通信量,很好的提高了算法的搜索效率,提升了标签的识别速度与识别率。 相似文献
4.
为了将标签间的语义相关性引入多标签图像分类模型中,传统的方法例如 ML-GCN 通过设置单阈值将标
签条件概率矩阵二值化为标签共现矩阵,然而,仅设置单阈值很难归纳所有的标签语义关系情况。 针对这一问题,
提出一种融合标签间强相关性的多标签图像分类方法—MGAN(Multiple Graph Convolutional Attention Networks),
通过设置多个阈值,将传统的标签条件概率矩阵按照不同的相关性程度分割为多个子图;同时,为了提升多标签分
类性能,也引入图像区域空间相关性。 另外,针对传统的“CNN+GCN”方法将标签与特征的融合张量视为预测分数
缺乏可解释性问题,将标签与特征的融合张量视为注意力分数;在 MS-COCO 和 PASCAL VOC 数据集上与其他主
流多标签图像分类方法进行了对比实验,平均准确率分别达到了 94. 9%和 83. 7%,相较于经典 ML-GCN 模型,分
别获得了 0. 9%和 0. 8%准确率提升,且在“Binary”和“Re-weighted”邻接矩阵模式下,MGAN 都有较好的表现,验证
了新的融合方法可以缓解图卷积神经网络过平滑问题对多标签图像分类的影响。 相似文献
5.
吴碧霞 《成都大学学报(自然科学版)》2011,30(4):335-338
传统的ID3决策树算法存在诸多不足,如计算效率低、多值偏向等,对此,提出了属性值空缺、多值属性的选择以及属性选择标准方面的改进方案,并将加权熵和简化熵引入决策树算法以改进传统ID3算法.实验结果表明,改进后的算法在整体性能方面较目前广泛应用的ID3算法有更优秀的性能表现. 相似文献
6.
基于粗糙集的多标签文本分类算法 总被引:1,自引:1,他引:0
将粗糙集优越的约简理论应用于多标签文本分类,提出了基于粗糙集理论的多标签文本分类算法,该算法利用训练阶段得到的各个类别的分类规则与测试实例逐一匹配,得出实例的类标签集合,扩展了粗糙集理论在文本分类中的应用,实验证明算法有效可行. 相似文献
7.
一种改进的后退式二进制搜索RFID多标签防碰撞算法 总被引:1,自引:0,他引:1
多标签防碰撞技术是射频识别系统中的关键技术和研究热点,文章在对现有防碰撞算法的分析基础上,提出一种改进的基于后退式二进制搜索的防碰撞算法。该算法能够动态地调整发送指令的长度,从而有效减少搜索次数和传输工作量,并在无碰撞时采用后退策略来快速识别标签。通过仿真实验分析可以看出,该算法比原算法能更快速高效地完成标签识别,有效地解决了RFID系统的多标签防碰撞问题。 相似文献
8.
多标签分类中如何有效处理具有许多实例和大量标签的大规模数据集、补偿训练集中缺失标签以及利用未标记实例改进预测性能等问题已成为重要研究方向。提出嵌入式多标签分类(EMC)算法,首先从伪实例参数化的高斯过程(GP)中提取两组随机变换来模拟特征向量、潜在空间表示向量和标签向量之间的非线性关系映射,其次引入一组辅助变量结合专家集成(EEOE)方法补偿缺失标签,最后利用未标记实例学习随机函数的平滑映射提高预测性能。仿真结果表明,与特征识别隐式标签空间编码的多标签分类(FaLE)算法和半监督低秩映射多标签分类(SLRM)算法相比,EMC算法优化了处理大规模数据集、补偿缺失标签及利用未标记数据的能力,从而提高了类标签的预测性能,且具有良好的可扩展性,训练时间短。 相似文献
9.
在基于有限状态自动机的多模式匹配算法(DFSA算法)基础上,结合Tuned BM算法的优点,提出一种快速的多模式字符串匹配算法,实现了多模式匹配过程中不匹配字符的连续跳跃.在一般情况下,算法不需要匹配目标串中的每个字符,而是在实际比较之前跳过尽可能多的字符,以减少字符比较的操作,实现快速匹配.在模式串较长和较短的情况下,算法都有很好的性能.分析指出算法实际比较的字符数随着模式串长度的增加而下降,并随模式集的增大有所增多.实验表明,在模式串较短时,算法需要的匹配时间仅为AC算法的50%到33.3%,AQR算法的90%左右;在模式串较长时,所需时间为AC算法的25%至12.5%,AQR算法的75%左右. 相似文献
10.
在层次多标签分类问题中,一个样本同时被赋予多个类别标签,并且这些类别标签被组织成一定的层次结构。层次多标签分类问题的主要挑战在于:①分类方法的输出必须符合标签的层次结构约束;②层次深的节点所代表的标签往往只有很少的样本与之相关,造成标签不平衡的问题。提出一种用于层次多标签分类问题的增量式超网络学习方法(hierarchical multi-label classification using incremental hypernetwork, HMC-IMLHN),通过将超网络的超边组织成相应的层次结构,使输出的预测标签能够满足标签的层次约束。此外,超网络学习方法可以利用标签之间的关联减少标签不平衡问题对分类性能的影响。实验结果表明,与其他层次多标签分类方法相比,提出的增量式超网络方法能够取得较好的分类准确性。 相似文献
11.
《厦门大学学报(自然科学版)》2017,(2)
为了提高代价敏感分类算法MetaCost的准确率,降低错分代价,提出了多类别问题下的一种代价敏感分类算法(简称D-MetaCost算法).该算法利用MetaCost算法,通过多次取样生成多个模型,依据它们的分类准确率,选择其中准确率较高的前几个基分类器,将它们与最后阶段新生成的分类器聚集在一起得到最终分类模型.实验表明,D-MetaCost算法在准确率和代价方面比经典的MetaCost算法有明显的改进和提高. 相似文献
12.
给出了一种基于编码二叉树的支持向量机(SVM,Support Vector Machine)的多类分类算法.首先,定义了一种构造编码二叉树的方法,在此基础上合理的使用每个训练样本对应的编码来对多类样本进行划分,使之转化为两类分类问题.由算法的实现过程可以看出,本算法可以大大减少子分类器的构造个数,从而简化了多类SVM分类算法. 相似文献
13.
在二叉树结构支持向量机(SVM)多分类算法的基础上,针对二叉树算法中点和叶盲目划分的问题,提出了一种新的二叉树SVM多分类算法.该算法通过标记划分的方法,一方面解决了盲目划分的问题,另一方面大大减少了子分类器的数目,大幅度提高了算法的速度.实验结果表明,该算法具有一定的优越性. 相似文献
14.
针对多标签数据类别间的相关性与共现性,提出了一种使用自适应线性回归的多标签分类算法,将经典线性回归理论推广到多标签形式,结合多种评判标准对回归结果设置阈值,进而自适应地预测出最终标签.该方法同时考虑了符合数据期望的固定阈值与反映分类器综合效果的自适应阈值,因而降低了数据分布与噪声对分类的影响.实验结果表明,该方法可以有效地解决多标签分类问题. 相似文献
15.
基于多关键字匹配的Sun Wu算法进行的分析,结合Qs算法的思想,设计了一种改进的多关键字匹配算法:QMS(quick multi-pattern searching)。算法使用散列技术和前缀表减少发生部分匹配时实际进行的关键字比较次数。在计算跳跃距离时,充分考虑当前窗口的紧邻下一个字符带来的信息,进而使用更加精确的跳跃距离计算方法以获得更大的平均跳跃距离,从而获得更高的扫描效率和空间利用率。在真实文本上的对比实验表明,在通常应用环境中,该算法显著的缩短了扫描时间,取得了很好的效果。 相似文献
16.
在众多社区挖掘算法中,标签传播算法因为接近线性时间复杂度被广泛应用,但其也存在大量随机性,稳定性差的问题,采取一种新型的多标签策略解决重叠社区挖掘问题,并根据节点度减少初始标签赋予量的方法提升了算法的稳定性. 相似文献
17.
针对AMSA算法存在的不足,该章提出了IAMSA算法。仿真分析表明,该章所提出的IAMSA算法有效地较少空闲时隙,提高检测速度以及系统吞吐率。 相似文献
18.
针对密集杂波下现有的多机动目标跟踪算法性能衰减严重的问题,提出了一种标签多伯努利目标跟踪与分类算法。首先,引入类别信息对目标状态进行扩维;然后利用类别属性对目标机动模型转移密度进行修正,并推导新的状态转移密度函数,抑制了错误机动模型对目标状态预测的影响;同时,建立目标位置与属性的联合量测似然函数,增大了目标与杂波的区分度,从而增强杂波抑制能力;最后,基于多模型标签多伯努利滤波器框架推导了新的预测、更新方程。仿真实验结果表明:所提算法在高杂波环境下仍能对多机动目标进行有效跟踪,其目标数估计误差及最优子模式分配距离分别约为多模型概率假设密度联合检测、跟踪、分类滤波器的1/2和1/4,为多模型势平衡多伯努利联合检测、跟踪、分类滤波器的3/4和1/2。 相似文献
19.
K最近邻算法(KNN)被认为是向量空间模型下最好的分类算法之一,在准确率和召回率方面比较出众,但随着样本数量的增加其相似度计算开销很大。本文提出一种改进算法RS-KNN,主要是利用粗糙集的相关理论,计算训练样本集中各样本子类的上近似空间和下近似空间,根据待分类文本出现在不同的近似空间,以缩减与待分类样本计算相似度的训练样本个数。实验表明此算法能够有效地降低分类计算开销。 相似文献
20.
一种基于KNN的半监督分类改进算法 总被引:1,自引:0,他引:1
本文提出一种新的基于KNN分类的半监督学习self-training改进算法,并以多个UCI数据集为实验,对基于KNN的半监督分类模型算法进行改进,充分利用已知类别标签数据的正确知识进行自训练,以得到最终分类结果.实验结果表明,该方法能显著提高分类准确率. 相似文献