首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
以聚乙烯醇(PVA)包埋反硝化污泥,制得粒径为2.7、3.6和4.8,mm的3种包埋微球,考察p H值、温度和溶解氧(DO)对不同粒径微球的短程反硝化过程的影响.结果表明,微球在厌氧条件下对NO2--N的降解符合零级反应动力学模型,且随粒径的增大,NO2--N降解速率(以NO2--N计)由14.2,mg/(L·h)降至13.3,mg/(L·h).与游离污泥相比,包埋微球对p H值和温度的耐受范围显著扩大.在p H=5.7时,粒径2.7、3.6和4.8,mm微球的NO2--N比降解速率(以N/MLVSS计)分别是游离污泥的1.5、1.8和2.1倍;而4,℃和48,℃时,不同粒径微球的NO2--N比降解速率差异并不显著.当DO为0.5~0.7,mg/L和1.0~1.2,mg/L时,受到NO2-和O2传质的双重影响,粒径为3.6,mm的微球表现出最高比降解速率(22.0和16.2,mg/(g·h)),是相同条件下游离污泥的2.8和8.0倍.  相似文献   

2.
固定化厌氧微生物处理含五氯酚废水   总被引:10,自引:0,他引:10  
在厌氧条件下,分别以海藻酸钙(CA)和聚乙烯醇(PVA)为固定化微生物包埋剂,采用正交试验法,确定了其适宜的包埋条件,对形成的两种固定化微生物小球进行了比较,其中CA球的机械强度及吸附性能不及PVA球,但传质性能强于PVA球,在低负荷下CA球的PCP去除率高于PVA球,在高负荷下,则反这,固定化微生物对废水中PCP处理效率均优于未包埋的活性污泥。  相似文献   

3.
采用聚乙烯醇(PVA)-海藻酸钠作为包埋材料,以氯化钙和饱和硼酸的混合溶液作为交联剂包埋富集培养后的活性污泥,制成固定化小球。用小球颗粒做乳品废水CODCr的去除试验,通过正交试验研究了3个因素pH、温度、小球颗粒浓度对CODCr去除率的影响程度,并对工艺条件进行了优化。  相似文献   

4.
以海藻酸钠为包埋载体,活性炭为添加材料,对沼泽红假单胞菌Rhodopseudomonas palustris PSB-1D进行固定化,通过正交试验确定固定化微生物小球的最佳制备条件:活性炭添加量为1%,海藻酸钠质量分数为3%,包埋菌体与包埋材料的质量比为1/20。在最佳条件下,微生物小球培养7 d后对2-氯苯酚(2-CP)的降解率为72.6%。对比研究微生物小球和游离细菌的降酚效果。将微生物小球引入序批式好氧生物反应器(SBR)工艺中,分别研究小球投加量、曝气时间、曝气量对生物反应器降解2-氯苯酚效果的影响。试验结果表明:微生物小球对2-CP的降解率较游离细菌有明显提高。在黑暗好氧条件下,有效容积为5 L的固定化生物反应器对2-CP模拟废水降解处理的最佳稳定工艺条件为:微生物小球投加量为20 g,曝气时间10 h,曝气量为100 L/h。在此条件下,经过连续30个周期的测定,微生物小球对2-CP的平均去除率始终保持在65%左右。  相似文献   

5.
使用聚乙烯醇(PVA)为包埋剂,硼酸(H3BO3)为交联剂将聚间苯二胺粉末包埋成球。着重考察了包埋剂浓度、包埋比、交联时间这3个因素对小球性能的影响。对不同包埋条件进行比较,发现小球综合性能最佳的包埋工艺条件是,PVA质量百分比浓度为8%,包埋比为1∶1,交联时间为24 h,海藻酸钠质量百分比为0.2%。在该条件下小球的损失率为15.1%,对Pb2 的吸附容量达129.1 mg·g-1。在最佳工艺基础上添加少许CaCO3可提高小球对Pb2 的吸附率,高达82.5%,而且也改善了小球的强度。  相似文献   

6.
为提高吸附剂对印染废水中染料的去除率及其循环再生性,用六氯环三磷腈(PNC)和聚乙烯亚胺(PEI)对可生物降解的β-环糊精(β-CD)进行改性,制备两种水不溶性β-CD基纳米吸附剂β-CDN和β-CDN@PEI,并对吸附剂的结构与形态进行表征。用纳米吸附剂对酸性黄AY11染料溶液进行吸附处理,研究染液pH对吸附剂吸附性能的影响,用Langmuir等温吸附模型和拟一级、拟二级吸附动力学模型对吸附过程进行拟合,并与活性炭的吸附性能进行对比。结果表明:纳米吸附剂对AY11染料的去除率随染液pH值的增大而降低,其中β-CDN@PEI对染料的去除率优于β-CDN且在pH<10时保持稳定;β-CDN、β-CDN@PEI和活性碳对AY11染料的吸附过程均符合Langmuir等温吸附模型及拟二级动力学模型;β-CDN、β-CDN@PEI对AY11染料的饱和吸附量分别达1 347.98、2 488.19 mg/g,明显高于相同吸附条件下活性炭的饱和吸附量(876.18 mg/g)。  相似文献   

7.
采用魔芋葡甘聚糖羧甲基化并负载稀土金属镧的方法制备出载镧羧甲基魔芋葡甘聚糖凝胶微球吸附剂(CMKGM-La),研究了该吸附剂对模拟废水中磷的吸附去除特性,并用SEM-EDX和FT-IR分析技术对吸附剂形貌及吸附机理进行表征和分析。在pH值为4、吸附剂剂量为1 g/L、磷初始浓度为10 mg/L的条件下CMKGM-La凝胶微球吸附剂对磷的最大去除率可达95.45%。CMKGM-La凝胶微球吸附剂去除磷的可能吸附机理是稀土金属镧与磷之间的软硬酸碱相互作用和质子化羟基与磷之间的静电引力。  相似文献   

8.
研究了包埋粉末活性炭的高分子凝胶球对废水中无机磷的去除效率及吸附特性.结果表明:海藻酸钠(SA)、聚氧化乙烯(PEO)、聚乙烯醇(PVA)、粉末活性炭(PAC)等4种含粉末活性炭的高分子凝胶球吸附无机磷的平衡时间都是2h,PEO-SA-PAC凝胶球的吸附效率最高.实验最佳温度为30℃,是放热反应.准二级动力学方程可以很...  相似文献   

9.
 采用静态因素选择实验与动态模拟实验相结合的方法,证实聚乙烯醇-海藻酸钠(PVA-SA)复合凝胶固定的微生物在氯苯污染地下水中对污染物的降解效果优于游离微生物和土著微生物,并且证明了含水层介质粒径与小球粒径比值越大,越有利于固定化微生物对氯苯的迁移的观点,含水层介质粒径与小球粒径比在2—5之间时,15d后氯苯降解率高达78.16%;小球粒径越小,越有利于降解效率的提高。同时得到最佳氯苯降解效果的PVA-SA复合凝胶固定化条件为:PVA浓度80g/L,CaCl2浓度10g/L,包埋剂与菌液体积比30:1,SA质量分数1.0%。  相似文献   

10.
从土壤中筛选得到一株类芽孢杆菌A9,所产微生物絮凝剂MBFA9对水中Pb2+具有较高的去除作用,并进一步考察了MBFA9对Pb~(2+)的吸附动力学和热力学过程.结果表明:当水中初始Pb2+质量浓度为56.20 mg/L,MBFA9吸附25 min后的去除率最高可达92.73%;MBFA9捕集Pb2+的理论最大值为196.08 mg/g,吸附速率常数k2为0.019 g/(mg·min),动力学特征符合准二级动力学模型,其等温吸附模型与Langmuir方程拟合较好,相关系数R2=0.96;结合红外光谱检测、场发射扫描电镜和能谱分析,探讨了M BFA9去除Pb2+的机理为其表面的官能团如羟基、酰胺基、羧基等在捕集Pb2+过程中与之发生配合作用,对Pb2+的去除贡献了重要作用.  相似文献   

11.
以海藻酸钠水凝胶为骨架, 结合壳聚糖和磁性Fe3O4, 开发出一种新型的磁性壳聚糖/海藻酸钠复合凝胶球(MCSB)制备方法, 并通过正交试验和单因素实验, 探究不同制备条件对复合凝胶球制备效果的影响, 确定最优制备条件: CaCl2浓度为2.5 g/L, 海藻酸钠浓度为24 g/L, 壳聚糖添加量为5 g/L, 磁流体添加量为4.64 g/L。制备出的凝胶球表面光滑, 大小均匀, 纯黑色, 呈球形, 直径在2 mm左右, 具有顺磁性。通过傅里叶变换红外光谱(FTIR)、同步热分析(TGA)等手段对凝胶球进行表征。结果表明, MCSB的热稳定性良好, 凝胶球表面的活性基团主要有羟基、氨基、羧基等。吸附性能实验表明, 当MCSB用量为20 mg时, 对40 mL 25 mg/LCu2+溶液的吸附去除率为78.13%, 表明磁性壳聚糖/海藻酸钠复合凝胶球是一种制备简单、效果良好的新型复合吸附剂。  相似文献   

12.
固定异养硝化好氧反硝化菌脱氮能力的研究   总被引:2,自引:1,他引:1  
为了找到一种适合于具有异养硝化-好氧反硝化性能的WXZ-2菌的固定化方法,分别采用聚乙烯醇、卡拉胶、聚乙烯醇+琼脂混合液、聚乙烯醇+卡拉胶混合液,对此菌株进行包埋,制作成固定化小球.以氨氮及总氮去除率、机械强度、保存时间为指标确定适合WXZ-2菌的包埋材料.结果表明:聚乙烯醇+琼脂小球和聚乙烯醇+卡拉胶小球氨氮去除率均达到90%以上;聚乙烯醇+琼脂小球的总氮去除率达到90%以上,聚乙烯醇+卡拉胶小球的总氮去除率则只有80%左右,另两种小球的氨氮及总氮去除率都不到80%.除卡拉胶小球外,其他3种小球均表现出很好的机械强度,但是聚乙烯醇小球在使用过程中易粘连.聚乙烯醇+琼脂小球和聚乙烯醇+卡拉胶小球干燥保存3个月后,其活性分别为85.7%和81.2%.综合评价,聚乙烯醇+琼脂为WXZ-2菌的最适包埋载体.又对4种小球培养条件进行了研究,结果表明,载体的表面孔径和孔密度越小,转速对包埋微生物活性的影响越大.  相似文献   

13.
为强化污水地下渗滤系统(Subsurface wastewater infiltration system,SWIS)的脱氮效果,以活性污泥(d1.18mm)、炉渣(d=2~5mm)和草甸棕壤为主要组分,按体积比1∶8∶11配成一种生物基质,对比了该生物基质和草甸棕壤的理化性质、氨氮吸附能力、硝化及反硝化能力.结果表明:较草甸棕壤而言,生物基质具有适宜微生物生长的物理性质,氨化、硝化和反硝化菌群丰富;生物基质的理论最大氨氮吸附量为0.724mg/g,而草甸棕壤仅为0.403mg/g;生物基质的硝化强度由草甸棕壤的1.0mg/(kg·h)提高到4.2mg/(kg·h);反硝化强度从0.9mg/(kg·h)提高到2.9mg/(kg·h).相同进水水力负荷时,添加生物基质系统对氨氮和总氮的平均去除率比添加草甸棕壤的系统分别提高了15.7%和12.0%.  相似文献   

14.
通过微生物-类Fenton氧化联合技术提高水溶液中萘的降解.实验结果表明:投加量为200 mg·L-1的50 mL萘溶液经纺锤芽孢杆菌(BFN)降解96 h后,萘的去除率达100%,而溶液中COD的去除率仅为59.4%,说明溶液中还存在萘的降解中间产物.在纳米零价铁(nZVI)投加量为1.0 g·L-1,H2O2为10mmol·L-1,pH为3.0,温度35℃的优化条件下,对BFN降解40 h后的溶液进行类Fenton氧化,溶液COD的去除率达到86.7%.最终,微生物-类Fenton氧化联合法对200 mg·L-1萘溶液的COD总去除率高达91.6%.  相似文献   

15.
以β-环糊精(β-CD)键合硅胶为载体,亚氨基二乙酸(IDA)为螯合基,制备了新型固定金属离子亲和吸附剂.通过13C固体核磁、元素分析对其进行了表征.研究了吸附剂对牛血清蛋白(BSA)的吸附特性,25℃时吸附剂对BSA的最大吸附量达35 mg/g吸附剂.  相似文献   

16.
利用合成纳米锰钾矿去除模拟废水中Cd(Ⅱ),研究不同去除反应条件对废水中镉离子去除率的影响.结果表明:合成纳米锰钾矿对水溶液中Cd2+的去除平衡时间约为2h;在Cd2+质量浓度为50mg·L-1、溶液初始pH=6.50、反应温度25℃、处理剂粒径96~120μm、每升模拟废水中投加2g合成纳米锰钾矿时,平衡后Cd2+去除率为90.6%.当Cd2+质量浓度不高于300 mg·L-1时,吸附等温线近似符合Langmuir模型,合成纳米锰钾矿最大理论吸附量为120.5mg·g-1.纳米锰钾矿对于Cd2+的去除是表面配位吸附、静电吸附、离子交换三种模式共同作用的结果.  相似文献   

17.
固定化微生物工艺处理印染废水   总被引:3,自引:0,他引:3  
采用固定化微生物工艺,对混凝沉淀后退浆工序的印染废水进行了现场中试处理研究.试验结果表明,在水力停留时间(HRT)为20 h的条件下,对于进水化学需氧量(CODCr)为1.0-1.2 g/L的退浆废水,经过两级水解酸化、两级好氧处理后,其出水CODCr<100 mg/L,达到国家一级排放标准.其中,水解酸化阶段的HRT为10 h,CODCr负荷1.7 kg/(d·m3),去除率为44%;好氧阶段HRT为10 h,CODCr负荷1.9 kg/(d·m3),去除率为83%.在此基础上,建立了好氧反应器内大孔载体固定化微生物降解基质的动力学模型.  相似文献   

18.
利用合成纳米锰钾矿去除模拟废水中Cd (Ⅱ),研究不同去除反应条件对废水中镉离子去除率的影响.结果表明:合成纳米锰钾矿对水溶液中Cd2+的去除平衡时间约为2 h;在Cd2+质量浓度为50 mg · L-1、溶液初始pH=6.50、反应温度25℃、处理剂粒径96~120μm、每升模拟废水中投加2g合成纳米锰钾矿时,平衡后Cd2+去除率为90.6%.当Cd2+质量浓度不高于300 mg·L-1时,吸附等温线近似符合Langmuir模型,合成纳米锰钾矿最大理论吸附量为120.5mg·g-1.纳米锰钾矿对于Cd2+的去除是表面配位吸附、静电吸附、离子交换三种模式共同作用的结果.  相似文献   

19.
阿特拉津(atrazine)是一类普遍存在于环境中且难降解的污染物.本文探究了黄孢原毛平革菌(Phanerochaete chrysosporium)厚垣孢子对阿特拉津降解的最佳条件,包括温度、摇床转速、初始培养基pH及接种量.并在大田土壤盆栽实验中,研究P.chrysosporium厚垣孢子和土壤土著微生物对土壤中阿特拉津的降解情况.结果表明:P.chrysosporium厚垣孢子可以有效去除阿特拉津,在33℃、转速为180r·min~(-1)、pH值为7.0、接种量是4g·L~(-1)时,去除效果最好,去除率达90.77%.土壤盆栽实验结果表明:施用P.chrysosporium厚垣孢子28d后,非灭菌土壤中阿特拉津去除率为97.8%,其中P.chrysosporium的降解贡献最为突出,去除能力为59.3%.而土著土壤微生物的去除率仅为20.7%,表明P.chrysosporium厚垣孢子对AT降解效果明显.  相似文献   

20.
固定化微生物去除地下水中氯苯研究   总被引:2,自引:0,他引:2  
为探索固定化微生物技术去除地下水氯苯的最佳条件,采用聚乙烯醇(PVA)和海藻酸钠为包埋剂,培养了含氯苯的菌泥驯化培养的微生物,以制备固定化微生物小球,处理地下水中的氯苯.本研究从机械强度,传质性,氯苯降解率等方面综合考虑,利用正交实验确定了制备固定化微生物小球的最佳条件,并对固定化微生物和游离微生物降解氯苯的效果进行了比较.另外,还对固定化微生物降解地下水中氯苯的影响因素进行了探讨.实验结果表明,氯苯初始浓度大于20mg/L,固定化微生物降解氯苯效果好于游离微生物的.当小球粒径为1mm,菌液接种量为8%,氯苯初始浓度为80mg/L,pH值为7.0左右,盐度低于1.5%,控制培养温度为10℃,摇床转速为120r/min时,固定化微生物降解性能较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号