首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The migration of cells is a complex regulatory process which results in the generation of motor forces through the reorganization of the cytoskeleton. Here we present a comparative study of the expression and involvement of myosin in the regulation of the physiological migration of leukocytes and the pathological migration of tumor cells. We show that the involvement of myosin in the migration is distinct in these two cell types. In leukocytes, the activity of non-muscle myosin II is essential for both the spontaneous (matrix-induced) migration and the migration induced by ligands to G protein-coupled receptors, i.e. chemokines and neurotransmitters. In contrast, spontaneous tumor cell migration is largely independent of non-muscle myosin II activity, whereas the norepinephrine-induced migration is completely inhibited by either direct inhibition of non-muscle myosin II or of the kinases phosphorylating the myosin light chain, namely ROCK or the calcium/calmodulin-dependent myosin light-chain kinase.Received 31 August 2004; accepted 26 October 2004  相似文献   

2.
The present study describes the ability of an anthraquinone derivative aloe emodin (AE) to reduce the cytotoxic activity of the platinum(II)-based anticancer agent cisplatin toward murine L929 fibrosarcoma and C6 glioma cell lines. The protective effect of AE was demonstrated by MTT and crystal violet assays for cell viability, and involved supression of cisplatin-induced apoptosis and necrosis, as assessed by lactate dehydrogenase release and flow cytometric analysis of DNA fragmentation or phosphatidylserine exposure. Cell-based ELISA and Western blot analysis revealed that AE abolished cisplatin-triggered activation of extracellular signal-regulated kinase (ERK) in tumor cells, while activation of c-Jun N-terminal kinase was not significantly altered. A selective blockade of ERK activation with PD98059 mimicked the protective effect of AE treatment in both tumor cell lines. Moreover, AE failed to protect tumor cells against the ERK-independent toxicity of the Pt(IV)-based complex tetrachloro(O,O-dibutyl-ethylenediamine-N,N′-di-3-propanoate)platinum(IV). Taken together, these data indicate that herbal anthraquinone AE can downregulate the anticancer activity of cisplatin by blocking the activation of ERK in tumor cells.Received 30 January 2005; received after revision 21 March 2005; accepted 31 March 2005  相似文献   

3.
G Bailin 《Experientia》1984,40(11):1185-1188
In smooth muscle the Mr 20,000 light chain of myosin is phosphorylated by a calmodulin-dependent protein kinase. It consists of 2 subunits: calmodulin, an acidic protein of Mr 17,000 that binds 4 moles of Ca2+; and a larger protein of Mr circa 130,000. Activation of the kinase is dependent upon their association in the presence of Ca2+. Cyclic AMP-dependent protein kinase phosphorylation of the myosin light chain kinase occurs at 2 sites. It decreases the affinity of the kinase for calmodulin and a reduction in the rate of light chain phosphorylation occurs. The kinase has an overall asymmetric shape composed of a globular head and tail region for the skeletal muscle enzyme. Trypsin digestion of this kinase releases a fragment of Mr 36,000 from the globular region that contains the catalytic and calmodulin binding sites. Chymotrypsin digestion of the kinase from smooth muscle generates a fragment of Mr 80,000 that does not contain the calmodulin binding or cyclic AMP-dependent protein kinase phosphorylation sites. It is a Ca2+-independent form of the kinase that phosphorylates the light chain of myosin. These structural features indicate a regulatory role for the kinase in smooth muscle phosphorylation and contraction.  相似文献   

4.
Protein tyrosine phosphatases (PTPs) have been generally recognised as key modulators of cell proliferation, differentiation, adhesion and motility. During signalling, several PTPs undergo two posttranslational modifications that greatly affect their enzymatic activity: tyrosine phosphorylation and cysteine oxidation. Although these modifications share their reversibility depending on the intracellular environment, their effects on enzymatic activity are opposite, tyrosine phosphorylation being correlated to enzyme activation and thiol oxidation to complete inactivation. Several papers have suggested that both these modifications occur in response to the same stimuli i.e. cell proliferation induced by numerous growth factors and cytokines. Conversely, the possibility that these two regulation mechanisms act simultaneously on PTPs has not been established and very few reports investigated this dual regulation of PTPs. To underline the relevance of the question, we discuss several possibilities: (i) that tyrosine phosphorylation and cysteine oxidation of PTPs may share the same target molecules but with different kinetics; (ii) that PTP phosphorylation and oxidation may take place on different subcellular pools of the same protein and (iii) that these two modifications, although having divergent effects on enzyme activity, cooperate in the integrated and coordinated function of PTPs during receptor tyrosine kinase signalling. We believe that our perspective will open new perspectives on an ancient problem – the apparent contradiction of opposing enzymatic regulation of many PTPs – thus clarifying their role as positive or negative transducers (or both) of many extracellular stimuli.Received 11 October 2004; received after revision 26 January 2005; accepted 10 February 2005 Available online 29 March 2005  相似文献   

5.
TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in TRAIL-sensitive human malignant glioma cells. We show for the first time that TRAIL stimulates cell growth in TRAIL-resistant glioma cells. TRAIL-induced cell growth in resistant cells occurred through increased cell cycle progression as determined by flow cytometry and Western blot analysis of retinoblastoma protein phosphorylation. Western blot analysis of TRAIL-treated resistant cells revealed phosphorylation of ERK1/2 proteins and in vitro kinase analysis confirmed the activation of the ERK1/2 kinases. Inhibition of MEK1 eliminated both TRAIL-induced ERK1/2 activation and cell proliferation. In addition, siRNA inhibition of c-FLIP expression eliminates TRAIL-induced ERK1/2 activation and proliferation. Furthermore, overexpression of c-FLIPL potentiates TRAIL-induced ERK1/2 activation and proliferation of resistant glioma cells. Our results have shown for the first time that TRAIL-induced ERK1/2 activation and proliferation of TRAIL-resistant human glioma cells is dependent upon the expression of the long form of the caspase-8 inhibitor c-FLIPL. Received 2 November 2007; received after revision 14 December 2007; accepted 21 December 2007  相似文献   

6.
Dynamic assembly of actin filaments generates the forces supporting cell motility. Several recent biochemical and genetic studies have revealed a plethora of different actin binding proteins whose coordinated activity regulates the turnover of actin filaments, thus controlling a variety of actin-based processes, including cell migration. Additionally, emerging evidence is highlighting a scenario whereby the same basic set of actin regulatory proteins is also the convergent node of different signaling pathways emanating from extracellular stimuli, like those from receptor tyrosine kinases. Here, we will focus on the molecular mechanisms of how the machinery of actin polymerization functions and is regulated, in a signaling-dependent mode, to generate site-directed actin assembly leading to cell motility.These authors contributed equally to this work.Received 26 October 2004; received after revision 27 December 2004; accepted 6 January 2005 Available online 09 March 2005  相似文献   

7.
Sophisticated molecular genetic, biochemical and biophysical studies have been used to probe the molecular mechanism of actomyosin-based motility. Recent solution measurements, high-resolution structures of recombinant myosin motor domains, and lower resolution structures of the complex formed by filamentous actin and the myosin motor domain provide detailed insights into the mechanism of chemomechanical coupling in the actomyosin system. They show how small conformational changes are amplified by a lever-arm mechanism to a working stroke of several nanometres, explain the mechanism that governs the directionality of actin-based movement, and reveal a communication pathway between the nucleotide binding pocket and the actin-binding region that explains the reciprocal relationship between actin and nucleotide affinity. Here we focus on the interacting elements in the actomyosin system and the communication pathways in the myosin motor domain that respond to actin binding.Received 12 January 2005; received after revision 4 March 2005; accepted 23 March 2005  相似文献   

8.
Summary In smooth muscle the Mr 20,000 light chain of myosin is phosphorylated by a calmodulin-dependent protein kinase. It consists of 2 subunits: calmodulin, an acidic protein of Mr 17,000 that binds 4 moles of Ca2+; and a larger protein of Mr circa 130,000. Activation of the kinase is dependent upon their association in the presence of Ca2+. Cyclic AMP-dependent protein kinase phosphorylation of the myosin light chain kinase occurs at 2 sites. It decreases the affinity of the kinase for calmodulin and a reduction in the rate of light chain phosphorylation occurs. The kinase has an overall asymmetric shape composed of a globular head and tail region for the skeletal muscle enzyme. Trypsin digestion of this kinase releases a fragment of Mr 36,000 from the globular region that contains the catalytic and calmodulin binding sites. Chymotrypsin digestion of the kinase from smooth muscle generates a fragment of Mr 80,000 that does not contain the calmodulin binding or cyclic AMP-dependent protein kinase phosphorylation sites. It is a Ca2+-independent form of the kinase that phosphorylates the light chain of myosin. These structural features indicate a regulatory role for the kinase in smooth muscle phosphorylation and contraction.  相似文献   

9.
Identifying the small molecules that permit precise regulation of embryonic stem (ES) cell proliferation should further support our understanding of the underlying molecular mechanisms of self renewal. In the present study, we showed that PGE2 increased [3H]-thymidine incorporation in a time and dose dependent manner. In addition, PGE2 increased the expression of cell cycle regulatory proteins, the percentage of cells in S phase and the total number of cells. PGE2 obviously increased E-type prostaglandin (EP) receptor 1 mRNA expression level compare to 2, 3, 4 subtypes. EP1 antagonist also blocked PGE2-induced cell cycle regulatory protein expression and thymidine incorporation. PGE2 caused phosphorylation of protine kinase C, Src, epidermal growth factor (EGF) receptor, phosphatidylinositol 3-kinase (PI3K)/Akt phosphorylation, and p44/42 mitogen-activated protein kinase (MAPK), which were blocked by each inhibitors. In conclusion, PGE2-stimulated proliferation is mediated by MAPK via EP1 receptor-dependent PKC and EGF receptor-dependent PI3K/Akt signaling pathways in mouse ES cells. Received 30 January 2009; received after revision 03 March 2009; accepted 10 March 2009  相似文献   

10.
Enhanced cell migration is one of the underlying mechanisms in cancer invasion and metastasis. Therefore, inhibition of cell migration is considered to be an effective strategy for prevention of cancer metastasis. We found that emodin (3-methyl-1,6,8-trihydroxyanthraquinone), an active component from the rhizome of Rheum palmatum, significantly inhibited epidermal growth factor (EGF)- induced migration in various human cancer cell lines. In the search for the underlying molecular mechanisms, we demonstrated that phosphatidylinositol 3-kinase (PI3K) serves as the molecular target for emodin. In addition, emodin markedly suppressed EGF-induced activation of Cdc42 and Rac1 and the corresponding cytoskeleton changes. Moreover, emodin, but not LY294002, was able to block cell migration in cells transfected with constitutively active (CA)-Cdc42 and CA-Rac1 by interference with the formation of Cdc42/Rac1 and the p21-activated kinase complex. Taken together, data from this study suggest that emodin inhibits human cancer cell migration by suppressing the PI3K-Cdc42/Rac1 signaling pathway.Received 7 February 2005; received after revision 11 March 2005; accepted 18 March 2005  相似文献   

11.
The non-receptor tyrosine kinase Src is a critical regulator of cytoskeletal contraction, cell adhesion, and migration. In normal cells, Src activity is stringently controlled by Csk-dependent phosphorylation of Src(Y530), and by Cullin-5-dependent ubiquitinylation, which affects active Src(pY419) exclusively, leading to its degradation by the proteosome. Previous work has shown that Src activity is also limited by Cdk5, a proline-directed kinase, which has been shown to phosphorylate Src(S75). Here we show that this phosphorylation promotes the ubiquitin-dependent degradation of Src, thus restricting the availability of active Src. We demonstrate that Src(S75) phosphorylation occurs in vivo in epithelial cells, and like ubiquitinylation, is associated only with active Src. Preventing Cdk5-dependent phosphorylation of Src(S75), by site-specific mutation of S75 or by Cdk5 inhibition or suppression, increases Src(Y419) phosphorylation and kinase activity, resulting in Src-dependent cytoskeletal changes. In transfected cells, ubiquitinylation of Src(S75A) is about 35% that of wild-type Src-V5, and its half-life is approximately 2.5-fold greater. Cdk5 suppression leads to a comparable decrease in the ubiquitinylation of endogenous Src and a similar increase in Src stability. Together, these findings demonstrate that Cdk5-dependent phosphorylation of Src(S75) is a physiologically significant mechanism of regulating intracellular Src activity.  相似文献   

12.
The parvins   总被引:5,自引:0,他引:5  
The parvins are a family of proteins involved in linking integrins and associated proteins with intracellular pathways that regulate actin cytoskeletal dynamics and cell survival. Both α-parvin (PARVA) and β-parvin (PARVB) localize to focal adhesions and function in cell adhesion, spreading, motility and survival through interactions with partners, such as integrin-linked kinase (ILK), paxillin, α-actinin and testicular kinase 1. A complex of PARVA with ILK and the LIM protein PINCH-1 is critical for cell survival in a variety of cells, including certain cancer cells, kidney podocytes and cardiac myocytes. While PARVA inhibits the activities of Rac1 and testicular kinase 1 and cell spreading, PARVB binds αPIX and α-actinin, and can promote cell spreading. In contrast to PARVA, PARVB inhibits ILK activity and reverses some of its oncogenic effects in cancer cells. This review focuses on the structure and function of the parvins and some possible roles in human diseases. Received 5 August 2005; received after revision 5 September 2005; accepted 22 September 2005  相似文献   

13.
Vascular smooth muscle tone is controlled by a balance between the cellular signaling pathways that mediate the generation of force (vasoconstriction) and release of force (vasodilation). The initiation of force is associated with increases in intracellular calcium concentrations, activation of myosin light-chain kinase, increases in the phosphorylation of the regulatory myosin light chains, and actin-myosin crossbridge cycling. There are, however, several signaling pathways modulating Ca2+ mobilization and Ca2+ sensitivity of the contractile machinery that secondarily regulate the contractile response of vascular smooth muscle to receptor agonists. Among these regulatory mechanisms involved in the physiological regulation of vascular tone are the cyclic nucleotides (cAMP and cGMP), which are considered the main messengers that mediate vasodilation under physiological conditions. At least four distinct mechanisms are currently thought to be involved in the vasodilator effect of cyclic nucleotides and their dependent protein kinases: (1) the decrease in cytosolic calcium concentration ([Ca2+]c), (2) the hyperpolarization of the smooth muscle cell membrane potential, (3) the reduction in the sensitivity of the contractile machinery by decreasing the [Ca2+]c sensitivity of myosin light-chain phosphorylation, and (4) the reduction in the sensitivity of the contractile machinery by uncoupling contraction from myosin light-chain phosphorylation. This review focuses on each of these mechanisms involved in cyclic nucleotide-dependent relaxation of vascular smooth muscle under physiological conditions.  相似文献   

14.
Insulin-like growth factor I (IGF-I) is a potent stimulator of neuroblastoma cell motility. Cell motility requires lamellipodium extension at the leading edge of the cell through organized actin polymerization, and IGF-I stimulates lamellipodial elaboration in human neuroblastoma cells. Rac is a Rho GTPase that stimulates lamellipodial formation via the regulation of actin polymerization. In this study, we show that IGF-I-stimulated phosphatidylinositol 3-kinase (PI-3K) activity promotes rac activation and subsequent activation of the down- stream effectors LIM kinase and cofilin. Overexpression of wild-type LIM kinase and wild-type Xenopus ADF/cofilin (XAC) suppresses IGF-I-stimulated motility in SH-SY5Y cells, while expression of dominant negative LIM kinase and constitutively active XAC increases SH-SY5Y motility in the absence of IGF-I stimulation. These results suggest that regulation by cofilin of actin depolymerization is important in the process of neuroblastoma cell motility, and IGF-I regulates cofilin activity in part through PI-3K, rac, and LIM kinase.Received 18 October 2004; received after revision 3 December 2004; accepted 16 December 2004  相似文献   

15.
Cell motility is defined as cell movement in the three-dimensional space leading to repositioning of the cell. Atypical protein kinase C (aPKC, including ζ and λ/ι) are a subfamily of PKC. Different from classic PKC and novel PKC, the activation of atypical PKC is not dependent on diacylglycerol or calcium. PKCζ can be activated by lipid components, such as phosphatidylinositols, phosphatidic acid, arachidonic acid, and ceramide. Both phosphatidylinositol (3,4,5)-trisphosphate and PDK1 are necessary for the complete and stable activation of PKCζ. Atypical PKC is involved in the regulation of cell polarization, directional sensing, formation of filopodia, and cell motility. It is essential for migration and invasion of multiple cancer cell types. Particularly, atypical PKC has been found in the regulation of the motility of hematopoietic cells. It also participates in the regulation of proteolytic activity of podosomes and invadopodia. It has been found that atypical PKC can work coordinately with other PKC subfamily members and other signaling pathways. Research on the roles of atypical PKC in cell motility may lead to new therapeutic strategies for cancer and other diseases.  相似文献   

16.
Protein phosphorylation is a well-characterized biochemical process for reversible regulation of protein activity. Protein kinases and protein phosphatases are the key complementary players in this process, and through their coordinated activity cell homeostasis is tightly controlled. If these enzymes display aberrant activity, cells may undergo unrestrained growth, thus giving rise to complex diseases such as cancer. The technological platform gathered during the Human Genome Project recently allowed the systematic identifi cation of the genetic alterations present in the kinase (the kinome) and the phosphatase (the phosphatome) gene families. These studies suggest that most if not all human tumors carry genetic alterations in at least one phosphatase or kinase gene. Here we integrate the biochemical knowledge on the properties of these molecules with the information collected through their systematic genetic analysis in cancer. We also analyze why the molecular profi ling of the kinome and phosphatome in individual cancers is revolutionizing basic and clinical oncology.Received 13 May 2005; received after revision 30 May 2005; accepted 22 June 2005  相似文献   

17.
The chemokine CXCL8 is a powerful inducer of directional cell motility, primarily during inflammation. In this study, we found that CXCL8 stimulation led to paxillin phosphorylation in normal neutrophils, and that both CXCL8 receptors (CXCR1 and CXCR2) mediated CXCL8-induced paxillin phosphorylation. In CXCR2-transfected cells, the process depended on Gαi and Gαs coupling to CXCR2. Dominant negative (DN) paxillin increased CXCL8-induced adhesion and migration, indicating that endogenous paxillin keeps migration at submaximal levels. Furthermore, using activating antibodies to β1 integrins, analyses with focal adhesion kinase (FAK) DN variant (FRNK) and co-immunoprecipitations of FAK and paxillin, we found that β1 integrin ligation cooperates with CXCL8-induced stimulation, leading to FAK activation and thereafter to FAK-mediated paxillin phosphorylation. Our findings indicate that paxillin keeps directional motility at a restrained magnitude, and suggest that perturbations in its activation may lead to chemotactic imbalance and to pathological conditions associated with excessive or reduced leukocyte migration. R. Mintz, T. Meshel: These authors contributed equally to this work. Received 31 July 2008; received after revision 14 December 2008; accepted 16 December 2008  相似文献   

18.
Endogenous electrical fields (EFs) at corneal and skin wounds send a powerful signal that directs cell migration during wound healing. This signal therefore may serve as a fundamental regulator directing cell polarization and migration. Very little is known of the intracellular and molecular mechanisms that mediate EF-induced cell polarization and migration. Here, we report that Chinese hamster ovary (CHO) cells show robust directional polarization and migration in a physiological EF (0.3–1 V/cm) in both dissociated cell culture and monolayer culture. An EF of 0.6 V/cm completely abolished cell migration into wounds in monolayer culture. An EF of higher strength (≥1 V/cm) is an overriding guidance cue for cell migration. Application of EF induced quick phosphorylation of glycogen synthase kinase 3β (GSK-3β) which reached a peak as early as 3 min in an EF. Inhibition of protein kinase C (PKC) significantly reduced EF-induced directedness of cell migration initially (in 1–2 h). Inhibition of GSK-3β completely abolished EF-induced GA polarization and significantly inhibited the directional cell migration, but at a later time (2–3 h in an EF). Those results suggest that GSK-3β is essential for physiological EF-induced Golgi apparatus (GA) polarization and optimal electrotactic cell migration.  相似文献   

19.
20.
Cyclin-dependent kinase 1 (CDK1) is a major component of the cell cycle progression engine. Recently, several investigations provided evidence demonstrating that unscheduled CDK1 activation may also be involved in apoptosis in cancerous cells. In this article, we demonstrate that X-ray irradiation induced G1 arrest in MOLT-4 lymphocytic leukemia cells, the arrest being accompanied by reduction in the activity of CDK2, but increased CDK1 activity and cell apoptosis in the G1 phase. Interestingly, this increase in CDK1 and apoptosis by ionizing radiation was prevented by pretreatment with the CDK1 inhibitor, roscovitine, suggesting that CDK1 kinase activity is required for radiation-induced apoptotic cell death in this model system. Furthermore, cyclin B1 and CDK1 were detected co-localizing and associating in G1 phase MOLT-4 cells, with the cellular lysates from these cells revealing a genotoxic stress-induced increase in CDK1 phosphorylation (Thr-161) and dephosphorylation (Tyr-15), as analyzed by postsorting immunoprecipitation and immunoblotting. Finally, X-irradiation was found to increase Bcl-2 phosphorylation in G1 phase cells. Taken together, these novel findings suggest that CDK1 is activated by unscheduled accumulation of cyclin B1 in G1 phase cells exposed to X-ray, and that CDK1 activation, at the wrong time and in the wrong phase, may directly or indirectly trigger a Bcl-2-dependent signaling pathway leading to apoptotic cell death in MOLT-4 cells. Received 30 March 2006; received after revision 23 June 2006; accepted 24 August 2006 J. Wu and Y. Feng contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号