首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为了实现温室CO2浓度的自动测量和存储,设计了一种基于单片机的CO2浓度数据记录仪.记录仪采用STC12C5A32AD单片机作为微处理器,以时钟模块、传感器模块、显示模块、存储模块,通讯模块等部分分别完成定时、浓度测量、数据显示、存储及数据输出功能.在软件设计上,通过选用数字滤波方法提高传感器的测量精度,固定点测量结果表明其标准差低于4%.实验结果表明,测量仪能够完成温室CO2浓度的自动测量和存储,并可任意调整测量的间隔时间,提高了温室环境因子研究中浓度测量工作的自动化程度.  相似文献   

2.
赤潮异弯藻(Heterosigma akashiwo)是爆发有害藻华的常见藻种,也是危害海洋渔业的赤潮生物之一,广泛分布在全球近岸海域.随着大气CO2浓度升高、全球变暖及人类活动导致陆源营养盐入海通量的增加,在河口及近岸海域频发藻华.本研究通过调控营养盐浓度、CO2浓度和温度,探讨了当前气候变化趋势下赤潮异弯藻生长对营养盐变化的响应.结果显示,在所有CO2浓度和温度条件下,低磷组的赤潮异弯藻细胞密度和比生长速率均显著低于高磷组的;当CO2浓度升高时,赤潮异弯藻细胞最大密度和比生长速率均显著提高;当同时升高CO2浓度和温度时,其比生长速率再次显著增加;赤潮异弯藻的生长对不同CO2浓度和温度的响应在4种营养条件下类似.该研究表明,磷浓度是控制赤潮异弯藻生长的主要因子,在未来气候条件下赤潮异弯藻爆发藻华的强度和风险不断增加.控制营养盐的增加,特别是磷酸盐浓度,可能是防控赤潮异弯藻爆发的关键手段之一.该研究结果可为近岸水域的海洋生态管理提供参考.  相似文献   

3.
利用开顶式培养室,通入含不同浓度CO2的空气,研究在CO2浓度升高的条件下垂枝藓(Rhytidi-um rugosum)及塔藓(Hylocomium splendens)的生长情况.结果表明:500μmol.mol-1 CO2时垂枝藓株高表现为下降趋势,而塔藓表现为升高趋势;在700μmol.mol-1 CO2时塔藓的生物量上升,而垂枝藓的生物量下降,两者的生物量与株高之比都有所增加.因此,在高CO2浓度环境中,塔藓的适应性更强;高浓度CO2促进植物侧向生长,但对叶绿素的含量影响不大.  相似文献   

4.
为了研究CO2浓度变化对西北太平洋热带风暴气候特征的影响,采用全球大气海洋耦合环流模式GFDL CM2.1 3个CO2排放情景下的数值试验资料,提出了适合模式的识别模式热带风暴的标准,并采用NCEP再分析资料和年鉴资料检验了标准的合理性,分析了模式热带风暴在CO2浓度增加后气候特征的变化.结果表明,所提标准是合理的,所识别的模式热带风暴在暖心平均结构等方面与NCEP热带风暴平均结构相似性高;CO2浓度增加后,模式热带风暴频数减少,强度增强,强热带风暴增多,主要源地和活动地区西移,季节分布和持续时间的分布形势没有明显变化.  相似文献   

5.
为了对大气中CO2浓度的分布进行高精度的实时监测,并与被测区域2维图像构成光谱数据立方,设计了一种基于高精度数字控制的F-P干涉系统.通过对F-P两镜间微位移的高精度数字控制,实现光程差的周期性扫描,从而得到光谱数据立方.通过仿真分析了控制命令与压电信号的时序逻辑,并对光谱抽样进行了模拟计算.实验中系统的光谱调制带宽为761.52~762.56 nm,光谱分辨率为0.01 nm,测试CO2浓度范围为10~400 ppm,由TSI-7575型高精度CO2检测器标定.结果显示:该系统相对误差的平均值为1.04%,绝对误差平均值为1.52 ppm,符合设计要求.  相似文献   

6.
采用开顶式气室(OTC)控制模拟环境,测定1年生宁夏枸杞苗木在CO2倍增浓度((700±20)μmol/mol)处理下的净光合速率、蒸腾速率、气孔导度、水分利用效率及光响应曲线以及CO2响应曲线等,研究CO2浓度倍增对枸杞苗木光合特性的影响。结果表明:在各自生长环境下,处理组ECC((700±20)μmol/mol)的枸杞净光合速率在整个处理期间均高于对照组的ACC((350±20)μmol/mol),同时光补偿点提高,光饱和点降低,CO2饱和点升高。因此,CO2浓度增高可以提高枸杞叶片的净光合速率和水分利用效率。  相似文献   

7.
为考察春小麦不同抗旱性品种对干旱和高CO2反应的差异,在不同土壤持水量和CO2浓度梯度条件下,对高产性高原602和抗旱性定西24两种春小麦交叉处理一个生长季,结果发现CO2浓度倍增,使两种春小麦的光合速率、气孔阻力和水分蒸腾效率显著增加,增加幅度与土壤含水量分别为正、负和正相关.这种变化幅度在抗旱性不同的春小麦之间进行比较,尤其是在干旱条件下,发现春小麦光合作用、气孔阻力和水分蒸腾效率的变化幅度,抗旱性强的春小麦表现出更有利于生长的趋势.这说明春小麦对CO2浓度升高的反应存在着品种间的差异,也就是说不仅和土壤持水量相关而且还与春小麦抗旱性有关.  相似文献   

8.
探究室内危险性气体泄漏后的扩散特性及危害区域的影响,采用CFD软件FLUENT对室内自然通风条件下CO2连续泄漏扩散浓度的变化过程进行了数值模拟,研究CO2扩散过程的浓度场分布和危害区域变化规律,并比较CO2连续泄漏的风洞实验结果与数值模拟结果。结果表明:CO2在重力的作用下,泄漏后向空间的下方扩散,形成气体积聚,浓度逐渐延长,梯度变化较大,出现分层现象,并形成危害区域。随着时间的延长,室内各点的浓度增加,危害区域逐渐变大,并向上方移动;实验数据和模拟结果吻合较好,证明FLUENT可以较准确地模拟室内CO2的扩散过程。  相似文献   

9.
【目的】为了研究大型海藻在全球气候变化背景下的生态功能,探讨大气 CO2浓度升高和温度变化对石莼(Ulva lactuca)生长及其叶绿素荧光特性的影响。【方法】在4种条件(390μL/L CO2+15℃;700μL/L CO2+15℃;390μL/L CO2+25℃;700μL/L CO2+25℃)下培养石莼,10 d后测定藻体生长、叶绿素荧光参数以及生化组分。【结果】经10℃低温6 h处理,石莼受到光抑制;经35℃高温6 h处理,25℃正常空气条件下生长的石莼表现出较高的最大光量子产量(Fv/Fm),光能利用效率(α),非光化学淬灭(NPQ)和光化学淬灭(qP ),25℃高CO2浓度条件下生长的石莼最大相对电子传递速率(rETRmax)和饱和电子传递速率(Ek )大于其他生长条件下的石莼;经40℃高温处理6 h,15℃生长的石莼光合机构受损;相对于25℃与正常空气条件下生长的石莼,25℃与高CO2浓度条件下生长的石莼Fv/Fm、a、NPQ和qP 的下降程度较小,而且具有较高的rETRmax 和Ek。【结论】高CO2浓度促进石莼的生长,但其对石莼可溶性蛋白(SP )、可溶性碳水化合物(SC )、叶绿素 a (Chl a)和类胡萝卜素(Car )等生化组分含量影响具有温度依赖性。另外,CO2浓度升高使得石莼抗高温的能力增强。  相似文献   

10.
燃料乙醇是可再生的清洁燃料,具有替代汽油的应用前景.以CO2气体为碳源并通过催化加氢制燃料乙醇具有环境保护和节约能源的现实意义.主要介绍了CO2催化加氢的反应机理以及催化剂活性组分、前驱物、助剂及载体对催化活性、产物选择性的影响,同时介绍了反应条件对催化过程的影响.  相似文献   

11.
NaCl胁迫对互花米草光合作用及其参数的影响   总被引:1,自引:0,他引:1  
康浩  石贵玉  李佳枚 《广西科学》2009,16(4):451-454
以互花米草(Spartina alternif lora Loisel)为材料,研究不同盐浓度下其CO2响应曲线及其参数的变化情况。结果表明,盐浓度100mmol.L-1时,互花米草各项指标和参数达到最大值,预示此浓度比较适合其生长和繁殖 盐浓度高于300mmol.L-1时,其CO2响应(A-Ci)曲线、蒸腾速率(Tr)、气孔导度(Gs)、最大Rubisco羧化速率(Vcmax)和最大电子传递速率(Jmax)显著低于对照组,表明高盐浓度对互花米草的生长产生了抑制作用。盐胁迫对互花米草Rubisco数量及活性和RuBP再生产生破坏的程度无差异,二者综合作用导致互花米草光合速率(A)的降低。较高盐浓度时,互花米草依然可以积极调整生存策略,如降低蒸腾速率,保持较高的水分利用效率(WUE)等以此保障生命活动的继续进行,为其进一步建立种群和扩散提供基础。  相似文献   

12.
为了研究柴油在高浓度CO2下环境中的着火延迟特性,提出了适用于该环境下的着火延迟时间公式。该公式考虑了CO2的热效应和第三体效应对着火延迟的影响,分析了CO2摩尔浓度与着火延迟的关系,运用chemkin模拟了CO2对OH自由基生成速率的影响。对该环境下柴油的着火问题进行了定容燃烧弹的可视化实验研究和仿真计算。结果表明:着火延迟时间公式在CO2浓度小于60%时能够有效表达CO2对着火延迟时间的影响;CO2浓度大于60%时,反应H2O2+M→2OH+M中的第三体效率降低导致着火延迟增长变慢。  相似文献   

13.
 CO2匮缺与低风速是温室存在的普遍现象,即使在温室通风状态下也不例外。在温室通风时,为减少CO2逸散、提高CO2利用效率,采用零浓度差CO2施肥法同时进行室内送风,并对试验温室与对照温室内番茄冠层净光合速率、CO2利用效率、番茄冠层蒸腾速率进行调查。结果表明,当太阳辐射强度从383.5 W·m-2增加到940.1 W·m-2时,试验温室番茄冠层净光合速率从1.9 g·m-2·h-1升高到5.3 g·m-2·h-1,比对照温室番茄冠层净光合速率高出1.3~1.6 倍;而试验温室番茄冠层蒸腾速率从0.17kg·m-2·h-1升高到0.56 kg·m-2·h-1,比对照温室番茄冠层蒸腾速率高出1.2~1.4 倍;CO2利用效率近似于1。研究表明,在温室通风状态下采用零浓度差CO2施肥法同时进行室内送风是设施栽培增产的有效途径。  相似文献   

14.
采用溶胶-凝胶法制备了La、Cu共掺杂的纳米TiO2粉体,并用X射线衍射(XRD)、高分辨透射电镜(HR-TEM)和X射线光电子能谱(XPS)等技术表征了La/Cu/TiO2催化材料的结构和形貌.研究了不同La元素掺杂量对CO2还原产物甲醛生成量的影响.结果表明,质量分数0.1%La/0.6%Cu/TiO2材料的光催化还原CO2性能最佳,以0.2,mol/L NaOH作为还原剂、300,W高压汞灯(主波长为365,nm)为辐照光源、光催化反应6,h时,甲醛的生成量最大,可达304.49,μmol/gcat.  相似文献   

15.
采用PVT法,在高压条件下测定了CO2在大庆原油和地层水中的溶解度,并计算了饱和CO2油、水相的密度和膨胀系数.实验结果表明:在实验条件下,CO2在原油和地层水中的溶解度随压力的升高而增大,饱和CO2油、水相的密度随CO2溶解度的增大而线性增大.饱和CO2液相的膨胀系数受实验压力和CO2溶解度的影响较大,受液相组成的影响很小.实验还测定了CO2在不同油水体积比混合物中的溶解度,发现恒定温度下CO2在油水混合物中的溶解度只与压力和液相组成有关,而不受其他条件影响.  相似文献   

16.
针对测量精度受温度变化影响较大的不足,对LI-840A CO2/H2O气体分析仪进行了恒温控制改进;并在效果检验和仪器性能测试的基础上,提出了进一步改进观测方法的建议。结果表明:(1)自制恒温箱的温度控制范围为1~45℃,控温精度可达到±0.1℃。(2)恒温控制改进后,LI-840A与Picarro G1101-I气体分析仪的CO2浓度观测结果均十分接近且变化趋势一致。结合每天一次的校准频率,可以保证LI-840A的CO2浓度观测偏差控制在2μmol·mol-1以内,并在实际观测中得到了验证。  相似文献   

17.
SJ油田为一低渗透油藏,天然能量低。受CO2气源不足以及油井管柱抗腐蚀能力差的限制,持续的CO2-EOR不适合SJ油田的实际情况。鉴于此,一个改进的对策是用N2推动的CO2前置段塞驱代替持续的CO2驱油。本文根据SJ油田先导试验区的流体特征,对比了连续注入CO2驱油和N2推动的CO2前置段塞混相驱油的效果和机理。在注CO2、N2细管驱替效率及最小混相压力实验测试基础上,通过注CO2、N2与地层原油多级接触混相驱机理相态模拟,长细管前置CO2混相驱替+后续N2段塞顶替驱替机理一维数值模拟研究,分析了前置CO2段塞+后续N2顶替驱油时原油与注入气的互溶情况、气驱界面张力变化规律、气驱过程中C2—C6的中间烃组分在油气两相中的分布、气驱过程中油气两相的黏度以及密度变化。结果表明SJ油田实施前置CO2段塞+后续N2顶替驱油时,后续的N2与前置的CO2段塞不会出现严重的扩散弥散,注气前缘仍能保持CO2的富集并实现稳定的混相驱油即在注气总量相同的情况下,N2推动的CO2前置段塞驱可以获得与持续的CO2驱相同的驱油效果;同时减少了CO2的注入量,从而可减缓CO2长期注入对油井管柱产生的腐蚀。所得认识对CO2驱提高采收率技术的改进和发展具有一定的启发作用。  相似文献   

18.
利用自主搭建的可燃极限实验系统,对含有CO2和N2的合成气可燃下限进行实验研究,并对Le Chatelier公式进行校核.结果表明,合成气可燃下限随含氢量的增加而降低,由于反应控制机理的影响效应,少量氢气的加入对混合物可燃下限具有显著影响;合成气可燃下限随N2和CO2比例的增加近似线性升高,而CO2较强的热效应及化学效应使其对混合物可燃下限的影响更显著;由于Le Chatelier在推导过程中对化学反应作用的简化及忽视,使其对含氢量较低及惰化比例较高的合成气可燃下限的预测准确性较差,且计算结果不能区分不同惰性气体对合成气可燃下限的影响差异.  相似文献   

19.
在使用有机胺捕集CO2的工艺中,胺的降解性质是评价胺的重要因素之一。该文使用不锈钢密闭反应器和强制对流烘箱,在相同CO2负荷条件下分别考察了乙二胺(EDA)、1,2-二胺基丙烷(MEDA)、2-哌啶乙醇(2-PE)、哌嗪/2-氨基-2-甲基-1-丙醇(PZ/AMP)混合溶液在373~423K的热降解过程。除乙二胺外,所有实验的胺类的热降解速率都低于常用的乙醇胺(MEA)的热降解速率。在乙二胺分子上添加空间位阻有助于降低胺的热降解速率。本身具有热稳定结构的胺与其他胺类混合后,其热降解速率可能会提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号