首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.  相似文献   

2.
Dopamine responses comply with basic assumptions of formal learning theory.   总被引:25,自引:0,他引:25  
P Waelti  A Dickinson  W Schultz 《Nature》2001,412(6842):43-48
According to contemporary learning theories, the discrepancy, or error, between the actual and predicted reward determines whether learning occurs when a stimulus is paired with a reward. The role of prediction errors is directly demonstrated by the observation that learning is blocked when the stimulus is paired with a fully predicted reward. By using this blocking procedure, we show that the responses of dopamine neurons to conditioned stimuli was governed differentially by the occurrence of reward prediction errors rather than stimulus-reward associations alone, as was the learning of behavioural reactions. Both behavioural and neuronal learning occurred predominantly when dopamine neurons registered a reward prediction error at the time of the reward. Our data indicate that the use of analytical tests derived from formal behavioural learning theory provides a powerful approach for studying the role of single neurons in learning.  相似文献   

3.
Although many properties of the nervous system are shared among animals and systems, it is not known whether different neuronal circuits use common strategies to guide behaviour. Here we characterize information processing by Caenorhabditis elegans olfactory neurons (AWC) and interneurons (AIB and AIY) that control food- and odour-evoked behaviours. Using calcium imaging and mutations that affect specific neuronal connections, we show that AWC neurons are activated by odour removal and activate the AIB interneurons through AMPA-type glutamate receptors. The level of calcium in AIB interneurons is elevated for several minutes after odour removal, a neuronal correlate to the prolonged behavioural response to odour withdrawal. The AWC neuron inhibits AIY interneurons through glutamate-gated chloride channels; odour presentation relieves this inhibition and results in activation of AIY interneurons. The opposite regulation of AIY and AIB interneurons generates a coordinated behavioural response. Information processing by this circuit resembles information flow from vertebrate photoreceptors to 'OFF' bipolar and 'ON' bipolar neurons, indicating a conserved or convergent strategy for sensory information processing.  相似文献   

4.
The (Na(+)+K+)ATPase, an integral membrane protein located in virtually all animal cells, couples the hydrolysis of ATP to the countertransport of Na+ and K+ ions across the plasma membrane. In neurons, a large portion of cellular energy is expended by this enzyme to maintain the ionic gradients that underlie resting and action potentials. Although neurotransmitter regulation of the enzyme in brain has been reported, such regulation has been characterized either as a nonspecific phenomenon or as an indirect effect of neurotransmitter-induced changes in ionic gradients. We report here that the neurotransmitter dopamine, through a synergistic effect on D1 and D2 receptors, inhibits the (Na(+)+K+)ATPase activity of isolated striatal neurons. Our data provide unequivocal evidence for regulation by a neurotransmitter of a neuronal ion pump. They also demonstrate that synergism between D1 and D2 receptors, which underlies many of the electrophysical and behavioural effects of dopamine in the mammalian brain, can occur on the same neuron. In addition, the results support the possibility that dopamine and other neurotransmitters can regulate neuronal excitability through the novel mechanism of pump inhibition.  相似文献   

5.
Lai CS  Franke TF  Gan WB 《Nature》2012,483(7387):87-91
It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.  相似文献   

6.
S Bao  V T Chan  M M Merzenich 《Nature》2001,412(6842):79-83
Representations of sensory stimuli in the cerebral cortex can undergo progressive remodelling according to the behavioural importance of the stimuli. The cortex receives widespread projections from dopamine neurons in the ventral tegmental area (VTA), which are activated by new stimuli or unpredicted rewards, and are believed to provide a reinforcement signal for such learning-related cortical reorganization. In the primary auditory cortex (AI) dopamine release has been observed during auditory learning that remodels the sound-frequency representations. Furthermore, dopamine modulates long-term potentiation, a putative cellular mechanism underlying plasticity. Here we show that stimulating the VTA together with an auditory stimulus of a particular tone increases the cortical area and selectivity of the neural responses to that sound stimulus in AI. Conversely, the AI representations of nearby sound frequencies are selectively decreased. Strong, sharply tuned responses to the paired tones also emerge in a second cortical area, whereas the same stimuli evoke only poor or non-selective responses in this second cortical field in naive animals. In addition, we found that strong long-range coherence of neuronal discharge emerges between AI and this secondary auditory cortical area.  相似文献   

7.
M J Miserendino  C B Sananes  K R Melia  M Davis 《Nature》1990,345(6277):716-718
Receptors for N-methyl-D-aspartate (NMDA) seem to have a critical role in synaptic plasticity. NMDA antagonists (such as AP5) prevent induction of long-term potentiation, an activity-dependent enhancement of synaptic efficacy mediated by neural mechanisms that might also underlie learning and memory. They also attenuate memory formation in several behavioural tasks; there are few data, however, implicating an NMDA-sensitive measure of conditioning based on local infusion of antagonists into a brain area tightly coupled to the behavioural response used to assess conditioning. We now show that NMDA antagonists infused into the amygdala block the acquisition, but not the expression, of fear conditioning measured with a behavioural assay mediated by a defined neural circuit (fear-potentiation of the acoustic startle reflex). This effect showed anatomical and pharmacological specificity, and was not attributable to reduced salience of the stimuli of light or shock used in training. The data indicate that an NMDA-dependent process in the amygdala subserves associative fear conditioning.  相似文献   

8.
Wes PD  Bargmann CI 《Nature》2001,410(6829):698-701
Caenorhabditis elegans senses at least five attractive odours with a single pair of olfactory neurons, AWC, but can distinguish among these odours in behavioural assays. The two AWC neurons are structurally and functionally similar, but the G-protein-coupled receptor STR-2 is randomly expressed in either the left or the right AWC neuron, never in both. Here we describe the isolation of a mutant, ky542, with specific defects in odour discrimination and odour chemotaxis. ky542 is an allele of nsy-1, a neuronal symmetry, or Nsy, mutant in which STR-2 is expressed in both AWC neurons. Other Nsy mutants exhibit discrimination and olfactory defects like those of nsy-1 mutants. Laser ablation of the AWC neuron that does not express STR-2 (AWCOFF) recapitulates the behavioural phenotype of Nsy mutants, whereas laser ablation of the STR-2-expressing AWC neuron (AWCON) causes different chemotaxis defects. We propose that odour discrimination can be achieved by segregating the detection of different odours into distinct olfactory neurons or into unique combinations of olfactory neurons.  相似文献   

9.
Womelsdorf T  Fries P  Mitra PP  Desimone R 《Nature》2006,439(7077):733-736
Our capacity to process and respond behaviourally to multiple incoming stimuli is very limited. To optimize the use of this limited capacity, attentional mechanisms give priority to behaviourally relevant stimuli at the expense of irrelevant distractors. In visual areas, attended stimuli induce enhanced responses and an improved synchronization of rhythmic neuronal activity in the gamma frequency band (40-70 Hz). Both effects probably improve the neuronal signalling of attended stimuli within and among brain areas. Attention also results in improved behavioural performance and shortened reaction times. However, it is not known how reaction times are related to either response strength or gamma-band synchronization in visual areas. Here we show that behavioural response times to a stimulus change can be predicted specifically by the degree of gamma-band synchronization among those neurons in monkey visual area V4 that are activated by the behaviourally relevant stimulus. When there are two visual stimuli and monkeys have to detect a change in one stimulus while ignoring the other, their reactions are fastest when the relevant stimulus induces strong gamma-band synchronization before and after the change in stimulus. This enhanced gamma-band synchronization is also followed by shorter neuronal response latencies on the fast trials. Conversely, the monkeys' reactions are slowest when gamma-band synchronization is high in response to the irrelevant distractor. Thus, enhanced neuronal gamma-band synchronization and shortened neuronal response latencies to an attended stimulus seem to have direct effects on visually triggered behaviour, reflecting an early neuronal correlate of efficient visuo-motor integration.  相似文献   

10.
Schoups A  Vogels R  Qian N  Orban G 《Nature》2001,412(6846):549-553
The adult brain shows remarkable plasticity, as demonstrated by the improvement in fine sensorial discriminations after intensive practice. The behavioural aspects of such perceptual learning are well documented, especially in the visual system. Specificity for stimulus attributes clearly implicates an early cortical site, where receptive fields retain fine selectivity for these attributes; however, the neuronal correlates of a simple visual discrimination task remained unidentified. Here we report electrophysiological correlates in the primary visual cortex (V1) of monkeys for learning orientation identification. We link the behavioural improvement in this type of learning to an improved neuronal performance of trained compared to naive neurons. Improved long-term neuronal performance resulted from changes in the characteristics of orientation tuning of individual neurons. More particularly, the slope of the orientation tuning curve that was measured at the trained orientation increased only for the subgroup of trained neurons most likely to code the orientation identified by the monkey. No modifications of the tuning curve were observed for orientations for which the monkey had not been trained. Thus training induces a specific and efficient increase in neuronal sensitivity in V1.  相似文献   

11.
Mesolimbic dopamine-releasing neurons appear to be important in the brain reward system. One behavioural paradigm that supports this hypothesis is intracranial self-stimulation (ICS), during which animals repeatedly press a lever to stimulate their own dopamine-releasing neurons electrically. Here we study dopamine release from dopamine terminals in the nucleus accumbens core and shell in the brain by using rapid-responding voltammetric microsensors during electrical stimulation of dopamine cell bodies in the ventral tegmental area/substantia nigra brain regions. In rats in which stimulating electrode placement failed to elicit dopamine release in the nucleus accumbens, ICS behaviour was not learned. In contrast, ICS was acquired when stimulus trains evoked extracellular dopamine in either the core or the shell of the nucleus accumbens. In animals that could learn ICS, experimenter-delivered stimulation always elicited dopamine release. In contrast, extracellular dopamine was rarely observed during ICS itself. Thus, although activation of mesolimbic dopamine-releasing neurons seems to be a necessary condition for ICS, evoked dopamine release is actually diminished during ICS. Dopamine may therefore be a neural substrate for novelty or reward expectation rather than reward itself.  相似文献   

12.
Short-term memory in olfactory network dynamics   总被引:7,自引:0,他引:7  
Stopfer M  Laurent G 《Nature》1999,402(6762):664-668
Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clock. Here we examine, using locusts, the changes in population dynamics of projection-neuron assemblies over repeated odour stimulations, as would occur when an animal first encounters and then repeatedly samples an odour for identification or localization. We find that the responses of these assemblies rapidly decrease in intensity, while they show a marked increase in spike time precision and inter-neuronal oscillatory coherence. Once established, this enhanced precision in the representation endures for several minutes. This change is stimulus-specific, and depends on events within the antennal lobe circuits, independent of olfactory receptor adaptation: it may thus constitute a form of sensory memory. Our results suggest that this progressive change in olfactory network dynamics serves to converge, over repeated odour samplings, on a more precise and readily classifiable odour representation, using relational information contained across neural assemblies.  相似文献   

13.
Neuronal correlates of parametric working memory in the prefrontal cortex.   总被引:14,自引:0,他引:14  
R Romo  C D Brody  A Hernández  L Lemus 《Nature》1999,399(6735):470-473
Humans and monkeys have similar abilities to discriminate the difference in frequency between two mechanical vibrations applied sequentially to the fingertips. A key component of this sensory task is that the second stimulus is compared with the trace left by the first (base) stimulus, which must involve working memory. Where and how is this trace held in the brain? This question was investigated by recording from single neurons in the prefrontal cortex of monkeys while they performed the somatosensory discrimination task. Here we describe neurons in the inferior convexity of the prefrontal cortex whose discharge rates varied, during the delay period between the two stimuli, as a monotonic function of the base stimulus frequency. We describe this as 'monotonic stimulus encoding', and we suggest that the result may generalize: monotonic stimulus encoding may be the basic representation of one-dimensional sensory stimulus quantities in working memory. Thus we predict that other behavioural tasks that require ordinal comparisons between scalar analogue stimuli would give rise to monotonic responses similar to those reported here.  相似文献   

14.
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, is a polypeptidic factor initially regarded to be responsible for neuron proliferation, differentiation and survival, through its uptake at nerve terminals and retrograde transport to the cell body. A more diverse role for BDNF has emerged progressively from observations showing that it is also transported anterogradely, is released on neuron depolarization, and triggers rapid intracellular signals and action potentials in central neurons. Here we report that BDNF elicits long-term neuronal adaptations by controlling the responsiveness of its target neurons to the important neurotransmitter, dopamine. Using lesions and gene-targeted mice lacking BDNF, we show that BDNF from dopamine neurons is responsible for inducing normal expression of the dopamine D3 receptor in nucleus accumbens both during development and in adulthood. BDNF from corticostriatal neurons also induces behavioural sensitization, by triggering overexpression of the D3 receptor in striatum of hemiparkinsonian rats. Our results suggest that BDNF may be an important determinant of pathophysiological conditions such as drug addiction, schizophrenia or Parkinson's disease, in which D3 receptor expression is abnormal.  相似文献   

15.
S Halpain  J A Girault  P Greengard 《Nature》1990,343(6256):369-372
In the caudate-putamen the glutamatergic cortical input and the dopaminergic nigrostriatal input have opposite effects on the firing rate of striatal neurons. Although little is known of the biochemical mechanisms underlying this antagonism, one action of dopamine is to stimulate the cyclic AMP-dependent phosphorylation of DARPP-32 (dopamine and cAMP-regulated phospho-protein, of relative molecular mass 32,000 (32K]. This phosphorylation converts DARPP-32 from an inactive molecule into a potent inhibitor of protein phosphatase-1. Here we show that activation of the NMDA (N-methyl-D-aspartate) subclass of glutamate receptors reverses the cAMP-stimulated phosphorylation of DARPP-32 in striatal slices through NMDA-induced dephosphorylation of DARPP-32. Thus, the antagonistic effects of dopamine and glutamate on the excitability of striatal neurons are reflected in antagonistic effects of these neurotransmitters on the state of phosphorylation of DARPP-32. Our results indicate that stimulation of NMDA receptors leads to the activation of a neuronal protein phosphatase, presumably the calcium-dependent phosphatase calcineurin, and show, in an intact cell preparation, that signal transduction in the nervous system can be mediated by protein dephosphorylation.  相似文献   

16.
Switching on and off fear by distinct neuronal circuits   总被引:1,自引:0,他引:1  
Herry C  Ciocchi S  Senn V  Demmou L  Müller C  Lüthi A 《Nature》2008,454(7204):600-606
Switching between exploratory and defensive behaviour is fundamental to survival of many animals, but how this transition is achieved by specific neuronal circuits is not known. Here, using the converse behavioural states of fear extinction and its context-dependent renewal as a model in mice, we show that bi-directional transitions between states of high and low fear are triggered by a rapid switch in the balance of activity between two distinct populations of basal amygdala neurons. These two populations are integrated into discrete neuronal circuits differentially connected with the hippocampus and the medial prefrontal cortex. Targeted and reversible neuronal inactivation of the basal amygdala prevents behavioural changes without affecting memory or expression of behaviour. Our findings indicate that switching between distinct behavioural states can be triggered by selective activation of specific neuronal circuits integrating sensory and contextual information. These observations provide a new framework for understanding context-dependent changes of fear behaviour.  相似文献   

17.
Medina JF  Nores WL  Mauk MD 《Nature》2002,416(6878):330-333
A fundamental tenet of cerebellar learning theories asserts that climbing fibre afferents from the inferior olive provide a teaching signal that promotes the gradual adaptation of movements. Data from several forms of motor learning provide support for this tenet. In pavlovian eyelid conditioning, for example, where a tone is repeatedly paired with a reinforcing unconditioned stimulus like periorbital stimulation, the unconditioned stimulus promotes acquisition of conditioned eyelid responses by activating climbing fibres. Climbing fibre activity elicited by an unconditioned stimulus is inhibited during the expression of conditioned responses-consistent with the inhibitory projection from the cerebellum to inferior olive. Here, we show that inhibition of climbing fibres serves as a teaching signal for extinction, where learning not to respond is signalled by presenting a tone without the unconditioned stimulus. We used reversible infusion of synaptic receptor antagonists to show that blocking inhibitory input to the climbing fibres prevents extinction of the conditioned response, whereas blocking excitatory input induces extinction. These results, combined with analysis of climbing fibre activity in a computer simulation of the cerebellar-olivary system, suggest that transient inhibition of climbing fibres below their background level is the signal that drives extinction.  相似文献   

18.
A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.  相似文献   

19.
Target neuron prespecification in the olfactory map of Drosophila.   总被引:1,自引:0,他引:1  
G S Jefferis  E C Marin  R F Stocker  L Luo 《Nature》2001,414(6860):204-208
In Drosophila and mice, olfactory receptor neurons (ORNs) expressing the same receptors have convergent axonal projections to specific glomerular targets in the antennal lobe/olfactory bulb, creating an odour map in this first olfactory structure of the central nervous system. Projection neurons of the Drosophila antennal lobe send dendrites into glomeruli and axons to higher brain centres, thereby transferring this odour map further into the brain. Here we use the MARCM method to perform a systematic clonal analysis of projection neurons, allowing us to correlate lineage and birth time of projection neurons with their glomerular choice. We demonstrate that projection neurons are prespecified by lineage and birth order to form synapses with specific incoming ORN axons, and therefore to carry specific olfactory information. This prespecification could be used to hardwire the fly's olfactory system, enabling stereotyped behavioural responses to odorants. Developmental studies lead us to hypothesize that recognition molecules ensure reciprocally specific connections of ORNs and projection neurons. These studies also imply a previously unanticipated role for precise dendritic targeting by postsynaptic neurons in determining connection specificity.  相似文献   

20.
Neuronal activity patterns contain information in their temporal structure, indicating that information transfer between neurons may be optimized by temporal filtering. In the zebrafish olfactory bulb, subsets of output neurons (mitral cells) engage in synchronized oscillations during odour responses, but information about odour identity is contained mostly in non-oscillatory firing rate patterns. Using optogenetic manipulations and odour stimulation, we found that firing rate responses of neurons in the posterior zone of the dorsal telencephalon (Dp), a target area homologous to olfactory cortex, were largely insensitive to oscillatory synchrony of mitral cells because passive membrane properties and synaptic currents act as low-pass filters. Nevertheless, synchrony influenced spike timing. Moreover, Dp neurons responded primarily during the decorrelated steady state of mitral cell activity patterns. Temporal filtering therefore tunes Dp neurons to components of mitral cell activity patterns that are particularly informative about precise odour identity. These results demonstrate how temporal filtering can extract specific information from multiplexed neuronal codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号