共查询到17条相似文献,搜索用时 109 毫秒
1.
研究了GPS/INS组合系统在高动态运动目标定位中的应用。根据组合系统建立状态方程,GPS观测量构成观测方程。自适应滤波过程中,通过观测数据对观测噪声进行估计,再用Sage-Husa算法在对动态噪声进行估计的同时实现状态滤波估计。计算机仿真验证了这种滤波算法的有效性。 相似文献
2.
基于UKF的INS/GPS组合导航系统仿真 总被引:1,自引:0,他引:1
通过Unscented卡尔曼滤波(UKF)算法,研究INS/GPS紧耦合组合导航系统中滤波算法的问题,避免了对非线性的系统方程进行线性化。同时将自适应原理引入UKF,给出了一种自适应UKF算法。将EKF、UKF和自适应UKF分别应用到INS/GPS组合导航系统的滤波中。仿真结果表明,相比UKF算法,自适应UKF算法进一步提高导航解的精度和收敛速度,同时系统的鲁棒性也得到了提高。 相似文献
3.
为了提高在全球卫星定位系统(GPS)接收机导航解更新间隔期间组合导航系统的定位精度,在分析了惯导系统(INS)误差模型的基础上,使用一种对噪声协方差矩阵进行实时自适应估计的算法改进了通常使用的标准Kalman滤波器。采集清华大学内的跑车实测数据,并使用自适应算法进行处理,结果表明:该方法可以有效地提高GPS导航解间隔期间组合导航系统的定位精度,整体定位精度可以提升近10%,在车辆行驶状态变化较大的路径中获得了最高达40%的位置精度提升。该方法易于实时实现,在实际工程实现中具有一定的应用前景。 相似文献
4.
为解决自适应Kalman滤波中存在的问题,综合采用对观测粗差和滤波结果粗差进行判断、对系统噪声方差阵扩零和修改自适应方程减去项等措施对算法进行了改进.观测粗差的判断可以避免观测奇异,提高滤波稳定性;对滤波结果粗差的判断可避免矩阵求逆时的奇异现象;对状态噪声方差阵扩零,可保证在不影响滤波精度的情况下解决滤波过程中矩阵维数不对应的问题;修改自适应方程减去项,虽然牺牲了一定的精度,但可保证求解状态噪声协方差阵Q和观测噪声协方差阵R的等式右边非负定,从而保证Q和R的非负定.将上述改进后的自适应Kalman滤波算法应用到SINS/GPS组合导航中,仿真结果表明上述改进有效地提高了自适应Kalman滤波的稳定性,且保证了滤波的精度. 相似文献
5.
GPS/INS相对导航鲁棒扩展卡尔曼滤波方法 总被引:1,自引:0,他引:1
针对绕飞模式下追踪器与合作目标间的GPS/INS组合相对导航问题,考虑追踪器的惯量阵存在不确定性,为提高相对导航系统的精确性和稳定性,提出了一种GPS/INS组合相对导航的鲁棒扩展卡尔曼滤波算法. 该算法采用近似线性化方法将相对导航系统中的非线性函数进行泰勒级数展开,并将线性化引起的模型误差作为不确定项来处理,结合鲁棒卡尔曼滤波算法,设计了GPS/INS组合相对导航的鲁棒扩展卡尔曼滤波算法. 仿真结果表明,该方法相对位置的估计精度为0.1 m,相对姿态的估计精度为0.001°,相对导航精度很高,且对追踪器惯量阵存在的不确定性具有很好的鲁棒性. 相似文献
6.
车辆GPS/DR组合导航系统是非线性系统。采用扩展卡尔曼滤波(EKF)对其进行状态估计时,系统线性化过程将导致较大的滤波误差。为了获得更好的估计性能,将一类改进的粒子滤波方法 (UPF),即以无位卡尔曼滤波(UKF)为建议密度的粒子滤波方法(PF)应用于车辆GPS/DR组合导航系统中,避免了EKF方法的线性化近似过程,提高载体的定位精度。为验证该方法的有效性,将其与EKF分别用于GPS/DR组合导航系统的滤波仿真。仿真结果表明:UPF能减小导航定位误差,滤波性能明显优于EKF。 相似文献
7.
针对INS/GPS组合导航系统在数据处理时存在的计算量大和故障数据相互干扰的问题,提出了一种基于信息融合的导航参数最优估计滤波方法。文中首先介绍了信息融合的基本原理、关键技术以及常用方法,然后以INS/GPS组合为例,对组合导航系统的工作原理和模型建立进行了分析.最后对基于联合卡尔曼滤波的多传感器信息融合算法进行了论述与分析.该方法可提高导航系统的计算精度和速度.有较好的容错性和环境适应性,可有效地提高导航系统的精度和可靠性,为融合导航系统的数据分析和处理提供了一个有效途径。具有实际使用价值。 相似文献
8.
基于GPS/SINS组合导航系统的模型不准确或者量测噪声多变所产生的滤波发散问题,研究了自适应渐消卡尔曼滤波对于滤波发散的抑制作用,文章提出一种利用新息协方差估计值和量测值实时自适应计算渐消因子的方法,用它调节卡尔曼滤波方程中预测误差协方差阵和增益矩阵,调整历史新息和当前新息的权重达到抑制滤波发散的目的。该算法能有效减少严格收敛判据推导渐消因子的计算量和限制条件,有效利用了当前新息值。仿真验证表明,提出的算法能有效抑制滤波发散,并且比常规卡尔曼滤波效果更佳。 相似文献
9.
10.
针对量测噪声统计特性未知会影响GPS/SINS组合导航滤波精度的问题,提出了一种改进新息自适应的交互多模滤波算法:在估计新息协方差矩阵时,将在不同长度估计窗下得到的估计值进行加权组合,优化了估计窗口的选取;然后估计系统的量测噪声阵,并以该估计值为中心对称地构建交互多模模型集,再进行交互多模滤波,该方法解决了传统交互多模算法在噪声统计特性未知情况下模型数量与计算速度之间的矛盾。仿真结果表明:相比于标准卡尔曼滤波和单一估计窗口新息自适应交互多模滤波,该方法具有更高的滤波精度和抗干扰性。 相似文献
11.
组合导航系统新息自适应卡尔曼滤波算法 总被引:9,自引:1,他引:9
全球定位系统(GPS)量测噪声的不稳定变化将造成惯性导航系统(INS)/GPS舰用组合系统卡尔曼滤波器性能下降,在对自适应卡尔曼滤波器分析的基础上,提出了一种新的基于新息估计的自适应卡尔曼滤波算法.该算法通过计算新息方差强度的极大似然估计最优估计,将新息方差计算直接引入卡尔曼滤波器的增益计算.仿真结果表明,本文方法较标准卡尔曼滤波器可以提高系统精度和抗干扰能力. 相似文献
12.
针对自适应扩展卡尔曼滤波算法中系统噪声协方差矩阵与量测噪声协方差矩阵不能同时被估计的问题,提出了一种改进的自适应扩展卡尔曼滤波算法.该算法基于残差,主要对滤波算法中的自适应估计器进行改进,改进后可以实时估计系统噪声.基于该算法,设计了新的滤波器并应用在SINS/GPS紧组合导航系统上,可随着系统中噪声的变化而自动地调节协方差矩阵.最后,分别用扩展卡尔曼滤波和改进的自适应扩展卡尔曼滤波对SINS/GPS紧组合模型进行仿真,结果表明改进的自适应的扩展卡尔曼滤波比扩展卡尔曼滤波的定位误差与测速误差更小,滤波的稳定性更好. 相似文献
13.
针对无迹卡尔曼滤波(UKF)鲁棒性不强的问题,结合全球定位系统/惯性导航系统(GPS/INS)紧组合模型特点,提出了基于交互式多模型(IMM)的混合平方根无迹卡尔曼滤波(SRUKF)算法.该算法采用交互式多模型结构,克服了模型不确定性因素的影响;采用平方根滤波技术,解决了协方差矩阵难以保持正定的问题.同时,考虑到内部滤波器与线性/非线性模型不匹配,引入混合滤波思想,对SRUKF进行了优化.将新算法应用于紧组合模型进行仿真,结果表明:新算法能够以适当的时间复杂度,获得较强的鲁棒性能,适用于复杂的导航环境. 相似文献
14.
针对陆地车辆导航应用,基于速度特性建立了机体系约束用以提高卫星导航系统(GNSS)/微硅机械(MEMS)惯性组合导航系统的性能. 该约束将与车体运动方向相垂直的平面上的线速度近似为0,从而增加了组合系统的扩展卡尔曼滤波时间上连续的两维虚拟观测量,卫星信号失效时可保持滤波器的量测更新,当无外部观测量且车辆处于动态情况下,滤波可持续估计与反馈. 车载实验表明,组合系统在卫星信号失效30 s时,采用该算法可以将系统的定位精度提高约75%,姿态精度及速度精度也有相应的提高. 相似文献
15.
一种组合导航的自适应信息融合算法 总被引:1,自引:0,他引:1
以GPS/INS组合导航系统为应用背景,针对组合导航系统信息融合的精度与稳定性要求,将简化的Sage-Husa自适应滤波算法与指数加权衰减记忆滤波算法相结合,提出了一种改进的自适应信息融合算法.仿真表明,改进的自适应算法解决了噪声统计特性和模型参数不易确定的问题,能够有效的保证信息融合的精度和稳定性.在算法仿真的基础上,对在VC 6.0环境下算法进行了改进,给出了GPS/INS组合导航系统的结构及软件框架,通过实验验证了改进的自适应算法的实际应用价值. 相似文献
16.
一种用于GPS定位估计滤波算法的非线性模型 总被引:10,自引:0,他引:10
提出了一种将现代非线性滤波技术用于GPS定位估计的方法,该方法可用于低价位的单机GPS接收器的定位,提高它们的定位精度和鲁棒性.应用该方法,根据单机GPS的原始数据、伪距和多普勒频移进行定位估计。开发了一种新的基于非线性滤波的位置和速度估计模型,该非线性模型具有随观察到的卫星数量而改变状态和测量元个数的动态特性.运用一种新型的非线性滤波-平淡卡尔曼滤波求解该模型.GPS定位实验结果表明.与通用的最小二乘迭代法或直接从接受机获得的结果相比,所提出的非线性模型得出的滤波估计结果具有较高的精度和鲁棒性. 相似文献
17.
在全球卫星导航系统/惯性导航系统(global navigation satellite system/inertial navigation system,GNSS/INS)组合系统中,状态模型误差和异常扰动的影响严重降低了标准卡尔曼滤波的性能,而基于预测残差自适应的卡尔曼滤波随计算次数的增加滤波效果降低,且使用统一的自适应因子调节不可靠。针对上述问题,提出一种改进算法,利用预测残差建立的统计量调节位置向量和速度向量,避免了其他参数对滤波的平衡作用;通过预测残差的概率密度建立马氏距离进行假设检验,在模型正常时使用标准卡尔曼滤波,模型异常时使用改进滤波算法;采用实测车载数据对标准卡尔曼滤波、单因子自适应滤波和本文的滤波方法进行评估,实验结果表明:改进的自适应卡尔曼滤波的滤波算法效果良好,证明了所提算法的有效性。 相似文献