首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Yao  TanDong  Zhou  Hang  Yang  XiaoXin 《科学通报(英文版)》2009,54(16):2724-2731
The δ^18O variation in precipitation acquired from 28 stations within the network of Tibetan Observation and Research Platform (TORP) is studied, with the focus on the altitude effect of δ^18O in river water during monsoon precipitation in an effort to understand the monsoon influence on isotopic composition in annual river water. It is found that δ^18O in precipitation on the Plateau is influenced by different moisture sources, with significant Indian monsoon influence on δ^18O composition in plateau precipitation and river water. The δ^18O of water bodies in the monsoon domain is generally more depleted than that in the westerly domain, suggesting gradual rainout of southwesterly borne marine moisture in the course of long-distance transportation and lifting over the Himalayas. The lapse rate of δ^18O in river water with altitude is the largest during monsoon precipitation, due to the increased temperature vertical gradient over the southern Plateau region controlled by monsoon circulation. The combination of δ^18O in river water in monsoon (wet) and non-monsoon (dry) seasons shows a larger lapse rate than that in non-monsoon (dry) season alone. As the altitude effect of δ^18O in precipitation and river water on the Tibetan Plateau results from the combined effect of monsoon moisture supply and westerly moisture supply, the δ^18O composition and its altitude effect on the Plateau during monsoon seasons should be considered in the reconstruction of paleoelevation of the Tibetan Plateau.  相似文献   

2.
Analysis of daily precipitation samples for stable oxygen isotopes (δ^18O) collected at the Shiquanhe and Gerze (Gaize, Gertse) stations in the Ngari (Ali) region on the western Tibetan Plateau indicates that air temperature affects the δ^18O variations in precipitation at these stations. In summer, Shiquanhe and Gerze show strongly similar trends in precipitation δ^18O, especially in simultaneous precipitation events. Moreover, both stations experienced low δ^18O values in precipitation during the active monsoon period, resulting from the southwest monsoon (the summer phase of the Indian monsoon). However, during the break monsoon period (during the summer rainy season, when the monsoon circulation is disrupted), δ^18O values in summer precipitation remain relatively high and local moisture recycling generally controls the moisture sources. Air temperature correlations with δ^18O strengthen during the non-monsoon period (January--June, and October--December) due to continental air masses and the westerlies. In addition, evaporation also influences the δ^18O variations in precipitation. The observed temporal and spatial variations of δ^18O in precipitation on the western Tibetan Plateau and adjacent regions show that the late May and early June-the late August and early September time frame provides an important period for the transportation of moisture from various sources on the Tibetan Plateau, and that the region of the West Kunlun-Tanggula Ranges acts as a significant climatic divide on the Plateau, perhaps for all of western China.  相似文献   

3.
Gao  Jing  Tian  LiDe  Liu  YongQin  Gong  TongLiang 《科学通报(英文版)》2009,54(16):2758-2765
Given the potential use of stable isotope in the paleoclimate reconstruction from lacustrine records as well as in the local hydrology cycle, it is crucial to understand the processes of stable isotope evolution in catchment in the Tibetan Plateau region. Here we present a detailed study on the water oxygen isotope based on 2 years observation including precipitation, river water and lake water in the Yamzho Lake, south of the Tibetan Plateau. Temporal variation of local precipitation 5180 shows an apparent "monsoon cycle". In monsoon season, 5180 in waters is lower. In non-monsoon season, δ^18O in precipitation and lake water is higher and higher river δ^18O exists in spring, probably reflecting the effect of land surface evaporation, together with the higher δ^18O values in spring precipitation. It is also found that the surface lake water δ^18O varies seasonally and annually. The lower lake water δ^18O in the late summer is apparently related to the summer monsoon precipitation. The mean δ^18O value of lake water in 2007 is 1.2‰ higher than that in 2004, probably due to the less monsoon precipitation in summer of 2007, as can be confirmed from the precipitation data at the Langkazi meteorological data. It is also found that an obvious shift of vertical lake water δ^18O reflects the fast mixture of lake water. δ^18O values of lake water are over 10‰ higher than those of precipitation and river water in this region due to the evaporation fractionation. The modeled results show that the evaporation process of the lake water is sensitive to relative humidity, and the present lake water δ^18O reflects a relative humidity of 51% in the Yamzho Lake. It shows that the lake will take 30.5 years to reach present lake water δ^18O given a large shift in the input water δ^18O. The modeled results also reveal that surface lake water temperature and inflow δ^18O have slight effect on the isotopic balance process of lake water in the Yamzho Lake.  相似文献   

4.
Atmospheric water vapor samples were collected in the Nagqu River Basin in the middle of Tibetan Plateau between August and October in 2004. Results show that there exist some fluctuations of the δ^18O of atmospheric water vapor, especially before and after the monsoon's end.Moreover, the variety trend of the δ^18O of atmospheric water vapor inverse correlates with that of dew point. Precipitation events make an important effect upon the variation of δ^18O of atmospheric water vapor. During the whole sampling period, the δ^18O values of atmospheric water vapor are low while precipitation events occurred. The moisture origins w also contribute to the variation of δ^18O of atmospheric water vapor. The oceanic moisture transported by the southwest monsoon results in lower δ^18O of atmospheric water vapor in the Nagqu River Basin. Compared with the influence of the oceanic moisture, the δ^18O values, however, appear high resuiting from the effect of the continental air mass in this region.  相似文献   

5.
In order to investigate the elemental composition in atmospheric aerosols and its sources in the glacier area over the Tibetan Plateau (TP), seven totally suspended particle samples were collected continuously at the col of the Zhadang glacier (30°28′N,90°39′E,5800 m a.s.l.), Nyainqêntanglha Range, southern TP, from June to October 2006. Twenty-seven elements (Li, Be, B, Na, Mg, Al, K, Ca, Sc, Ti, V, Fe, Mn, Zn, Ga, As, Rb, Sr, Y, Cd, Cs, Ba, Tl, Pb, Bi, Th, U) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The result indicates that the concentrations of most elements (especially crustal elements) are lower than values at the Nam Co Station during the same period of 2005, and also much lower than other sites in the TP such as Wudaoliang and Waliguan. This suggests that elemental compositions of aerosols in the Zhadang glacier area may represent the background levels of the middle/upper troposphere over the TP. Crustal enrichment factors (EFs) reveal that several elements (e.g. B, Zn, As, Cd, Pb and Bi) may have anthropogenic sources. The southern TP is mainly influenced by the summer Indian monsoon during the sampling period. Backward air mass trajectory analysis suggests that air masses in the region may originate from South Asia. Therefore, anthropogenic pollutants from South Asia may be transported by the summer Indian monsoon to the region which clearly affects the atmospheric environment in the southern TP during the summer monsoon season.  相似文献   

6.
【目的】了解若尔盖湿地国家级自然保护区水环境特征、水体补给关系,为合理保护和改善湿地水生态环境提供理论参考。【方法】采用液态水/水汽同位素分析仪测定了氢氧稳定同位素丰度,通过离子色谱仪测定八大离子水化学特征指标,对若尔盖湿地国家级自然保护区不同水体(降水、河水、沼泽水、地下水)的化学参数和氢氧稳定同位素[(δ(D)和δ(18O)]进行分析,研究该区域水化学类型和同位素空间分布特征,探讨了其形成原因和环境意义。【结果】①湖泊水体、黑河及其入沼泽水体、出沼泽水体的主要化学类型都为$HCO_{3}^{-}$-Ca型(重碳酸钙型水);②若尔盖夏季“大气水线”为δ(D) = 8.28 δ(18O)+13.86,说明受局地水汽、二次蒸发影响小,但蒸发强烈。偏小的δ(18O)和δ(D)值,反映了雨季受海洋性暖湿气团的影响,降水集中且丰沛,重同位素沿途受雨水冲刷作用较强的特点。HYSPLIT模拟结果证明若尔盖夏季水汽来源于平稳的西风带,受西风环流控制;③降水是其他水体(河水、沼泽水、地下水)最初始的补给来源;河水斜率与沼泽水斜率相近,趋近平行,说明二者的补给关系最为频繁和密切,其中沼泽水接受黑河的支流——果曲、津曲、阿蒙曲、德纳的补给,而黑河的干流与沼泽则是交汇补给。【结论】若尔盖各水体水化学特征主要受流域水岩作用所调控,水体氢氧稳定同位素特征揭示了流域降水、蒸发、大气环流及水文循环过程。  相似文献   

7.
1994年前汛期广东区域水汽输送分析   总被引:4,自引:0,他引:4  
分析了1994年前汛期广东区域大气水汽与水汽输送,指出了这段时期水汽含量和水汽输送特征,水汽通量散度时空分布及变化,水汽突变(主要由高空湿层增厚引起)与夏季风建立和“946”暴雨的发生的关系.观测研究表明,在暴雨期,在时间尺度上水汽散合是短周期的,在垂直方向上有多个水汽无辐散层.  相似文献   

8.
Previous studies found extremely high d-excess in both ice core and glacial melt water in Dasuopu glacier, Xixiabangma, middle of Himalayas. These values are much higher than the global average and those measured in southwest monsoon precipitation. The d-excess variation in over one year at Nyalam station will clarify this phenomenon. Studies show that the high d-excess is related to the seasonal variation of moisture transport to this region. The d-excess values are low during the southwest monsoon active periods, when moisture originated from the humid ocean surface. The d-excess values are higher in non-monsoon months, when moisture is derived from westerly transport. Winter and spring precipitation accounts for a substantial portion of the annual precipitation, resulting in higher d-excess in the yearly precipitation in the middle of Himalayas than other parts of the southern Tibetan Plateau. This finding reveals that the precipitation in the middle of Himalayas is not purely from southwest monsoon, but a large portion from the westerly transport, which is very important for ice core study in this area.  相似文献   

9.
Qiao  YanSong  Zhao  ZhiZhong  Wang  Yan  Fu  JianLi  Wang  ShuBing  Jiang  FuChu 《科学通报(英文版)》2009,54(24):4697-4703
The West Sichuan Plateau is located in the southeast margin of the Tibetan Plateau, where the climate is mainly influenced by the Indian southwest summer monsoon and the Tibetan Plateau monsoon. In this study, detailed geochemical analysis has been carried out on Ganzisi loess-paleosol sequence in Ganzê County of western Sichuan Province. The results indicate that Ganzê loess and paleosol have experienced the incipient stage of chemical weathering in dust source regions, characterized by the decomposition of plagioclase which caused the depletion of mobile elements Na and Ca. The post-depositional chemical weathering is characterized by carbonate dissolution and oxidation of Fe2+. The variations of some geochemical indexes (such as CIA values, Na/K and Fe2+/ Fe3+ ratios) in Ganzisi loess-paleosol sequence indicate a gradually decreased chemical weathering intensity in the dust source regions and deposition areas since 1.15 Ma BP consistent with the general increase of global ice volume, reflecting that the arid trend since 1.15 Ma BP in the southeast Tibetan Plateau is a regional response to the global climate change. The geochemical indexes in this section also reveal an obvious drying step occurred at about 250 ka BP in this region. We interpret this drying step as a result of decreased influence of the Indian southwest summer monsoon. This decrease in monsoon moisture is probably attributable to the uplift of the southeast margin of the Tibetan Plateau at about 250 ka BP.  相似文献   

10.
利用耦合模式CESM1.0, 研究青藏高原地形对非洲北部降水的影响。敏感性试验结果表明, 去掉青藏高原地形后, 首先, 大气环流迅速做出调整, 出现自热带大西洋向东北方向至北非的水汽输送异常和自印度洋向西至北非的水汽输送异常, 造成北非大气水汽含量增加和水汽辐合增强, 降水增多。然后, 当海洋环流调整到准平衡态时, 北大西洋海表温度降低, 南大西洋海表温度升高, 地表大气温度也发生相应的变化。在南北温度梯度的影响下, 原本由热带大西洋向北非的水汽输送发生转向, 导致北非的水汽含量减少和水汽辐合减弱, 使得降水比前一阶段减少。即便如此, 在没有青藏高原的试验中, 当海洋环流调整到平衡态时, 北非大部分区域水汽辐合仍然强于有青藏高原的真实地形试验, 区域平均降水也增多。结果表明, 青藏高原的隆升可能在一定程度上加剧了北非的干旱化。  相似文献   

11.
华北夏季降水年代际变化与东亚夏季风、大气环流异常   总被引:3,自引:0,他引:3  
利用华北夏季降水资料和NCEP/NCAR再分析资料,对华北夏季降水、东亚夏季风年代际变化特征及大气环流异常进行研究,发现一些有意义的结果:华北夏季降水变化存在明显的8a、18a周期,东亚夏季风变化18a、28a周期性比较明显,二者年代际变化特征明显,但华北夏季降水变化和东亚夏季风变化的周期不完全一致.华北夏季降水量变化在60年代中期发生了突变,东亚夏季风变化在70年代中期发生了突变.华北夏季降水与东亚夏季风变化存在很好的相关关系,强夏季风年,华北夏季降水一般偏多,弱夏季风年,华北夏季降水一般偏少,但又不完全一致.东亚夏季风减弱是造成华北夏季降水减少的一个重要因素,但不是唯一因素,华北夏季降水减少还与环流异常密切相关.在地面上,青臧高原地区、华北地区气温下降造成华北低压系统活动减少,不利于降水.在850 hPa层上,东亚中纬度的西南季风和副热带高压南部的偏东风、西北部的西南风异常减弱,使得西南气流输送水汽很多难以到达30°N以北的地区,而副热带高压西部外围偏东南、偏南气流输送到华北地区的水汽也大量减少,水汽不足造成华北夏季降水偏少.在500 hPa高度场上,80年代欧亚遥相关型表现与50年代相反,变为欧洲( )、乌拉尔山(-)、中亚( )形势,这种环流使得乌拉尔山高压脊减弱,贝加尔湖至青藏高原高空槽变浅,纬向环流表现突出,不利于冷暖空气南北交换.同时在500 hPa气温场上,80年代,西伯利亚至青藏高原西北部的冷槽明显东移南压到蒙古至华北地区,锋区位于华北以东以南位置,使得华北地区冷暖空气交汇减少,降水也因此减少.华北夏季降水减少是由于东亚夏季风减弱和大气环流异常造成的.  相似文献   

12.
 利用美国Scripps海洋研究所提供的1961—2003年的海洋热含量再分析资料、低纬高原148站降水资料和NCEP/NCAR环流再分资料,采用EOF分析、相关分析、合成分析等方法研究了印度洋暖池热含量变化,及其对低纬高原6—8月降水的影响及其可能原因.结果表明,印度洋暖池6—8月热含量变化E0F分析第1模态为全场一致型,解释方差为28%.印度洋暖池热含量与中国低纬高原6—8月降水的关系主要体现为与云南北部和东部等地区的显著正相关,这种相关关系源于前期2—4月,且随时间的推移其影响范围不断扩大,至同期时达到最好.在印度洋暖池热含量偏高年,暖池区持续的加热异常在东侧对流层低层激发出反气旋式环流异常,造成副高西伸,从而在副高外围形成一条自孟加拉湾向低纬高原区域的经向水汽输送带,为低纬高原区域输送大量的水汽,从而造成低纬高原区域降水增多.相反,在印度洋暖池热含量异常偏低时,西南风水汽输送带较弱,水汽输送无法穿越山脉输送到低纬高原区,造成低纬高原汛期降水偏少.
  相似文献   

13.
The climatological distribution of mesoscale convective systems (MCSs) over China and its vicinity during summer is statistically analyzed, based on the 10-year (1996-2006, 2004 excluded) June-August infrared TBB (Temperature of black body) dataset. Comparing the results obtained in this paper with the distribution of thunderstorms from surface meteorological stations over China and the distribution of lightning from low-orbit satellites over China and its vicinity in the previous studies, we find that the statistic characteristics of TBB less than -52℃ can better represent the spatiotemporal distribution of MCSs over China and its vicinity during summer. The spreading pattern of the MCSs over this region shows three transmeridional bands of active MCSs, with obvious fluctuation of active MCSs in the band near 30^oN. It can be explained by the atmospheric circulation that the three bands of active MCSs are associated with each other by the summer monsoon over East Asia. We focus on the diurnal variations of MCSs over different underlying surfaces, and the result shows that there are two types of MCSs over China and its vicinity during summer. One type of MCSs has only one active period all day long (single-peak MCSs), and the other has multiple active periods (multi-peak MCSs). Single-peak MCSs occur more often over plateaus or mountains, and multi-peak MCSs are more common over plains or basins. Depending on lifetimes and active periods, single-peak MCSs can be classified as Tibetan Plateau MCSs, general mountain MCSs, Ryukyu MCSs, and so on. The diurnal variation of multi-peak MCSs is very similar to that of MCCs (mesoscale convective complexes), and it reveals that multi-peak MCSs has longer life cycle and larger horizontal scale, becomes weaker after sunset, and develops again after midnight. Tibetan Plateau MCSs and general mountain MCSs both usually develop in the afternoon, but Tibetan Plateau MCSs have longer life cycle and more active MαCSs. Ryukyu MCSs generally develop after  相似文献   

14.
This paper presents the stable isotope data of the snow pack and summer precipitation collected at the July 1 Glacier, Qilian Mountains in northwest China and analyses their relationships with meteorologi- cal factors. On an event scale, there is no temperature effect on the δ 18O values in the summer pre- cipitation, whereas the amount effect is shown to be clear. By tracing the moisture transport history and comparing the precipitation with its isotopic composition, it is shown that this amount effect not only reflects the change in moisture trajectory, which is related to the monsoon activities, but is also associated with the cooling degree of vapor in the cloud, the evaporation of falling raindrops and the isotopic exchange between the falling drops and the atmospheric vapor. As very little precipitation occurs in winter, the snow pack profile mainly represents the precipitation in the other three seasons. There are low precipitation δ 18O ratios in summer and high ratios in spring and autumn. The Meteoric Water Line (MLW) for the summer precipitation is δ D = 7.6 δ 18O 13.3, which is similar to that at Delingha, located in the south rim of the Qilian Mountains. The MWL for the snow pack is δ D = 10.4 δ 18O 41.4, showing a large slope and intercept. The deuterium excess (d) of the snow pack is positively correlated with δ 18O, indicating that both d and δ 18O decrease from spring to summer and increase from early autumn to early spring. This then results in the high slope and intercept of the MWL. Sea- sonal fluctuations of d in the snow pack indicate the change of moisture source and trajectory. During spring and autumn, the moisture originates from continental recycling or rapid evaporation over rela- tively warm water bodies like Black, Caspian and Aral Seas when the dry westerly air masses pass over them, hence very high d values in precipitation are formed. During summer, the monsoon is responsi- ble for the low d values. This indicates that the monsoon can reach the western part of the Qilian Mountains.  相似文献   

15.
The northward movement of the storm over Bengal Bay was the main weather system producing heavy snow over southern Tibet in Nov. 1995. The effect of the Tibetan Plateau on the track of the storm over Bengal Bay and its cloud system was discussed by analyzing the GMS-5 water vapor image. It is estimated from this discussion that the altitude of the Plateau obstruct effect on synoptic system can reach up to 300 hPa.  相似文献   

16.
Study on two loess sections, one located at Wuwei near the Tengger Desert in northwestern China, another located near Ganzi at the southeast margin of the Tibetan Plateau in southwest China, reveals a coeval drying step occurred at ~250 kaBP. It is expressed by the increase in eolian grain-size at Wuwei, and by a drastic extension of C4 plants and a decrease of loess chemical weathering intensity at Ganzi. Examination of the available eolian data indicates that the event has also been clearly documented in the loess sections near the deserts in northern China, and in the eolian records from the North Pacific. On the contrary, the signal is rather weak for the central and southern Loess Plateau regions as well as for Central Asia, where the climates are influenced by the southeast Asian monsoon and the westerlies, respectively. Since the climate at Ganzi is under strong control of the southwest Asian monsoon, we interpret this drying ste p as a result of decreased influence of the southwest summer monsoon. This decre ase in monsoon moisture is attributable to the uplift of the Hengduan Mountains, the southeast margin of the Tibetan Plateau at~250 ka ago.  相似文献   

17.
Investigation of temporal variations in the stable δ^18O and δD isotopes from Kathmandu's precipitation events shows that the relatively enriched δ^18O and δD values in the winter (the dry season, dominated by the westerlies) were positively correlated with temperature, indicating a temperature effect controlling the changes of δ^18O and δD. However, the δ^18O and δD values were depleted in the summer (the wet season, dominated by the Indian monsoon), which were negatively correlated with precipitation amount, indicating an amount effect. In addition, the comparison of stable isotopes in precipitation from Kathmandu and Mawlong (near the Bay of Bengal) shows that the overall trends of δ^18O and δD values at Kathmandu generally approximate those at Mawlong. However, there remain many differences between the details of the isotopic changes at Kathmandu versus those at Mawlong. Compared with those at Mawlong, the further rainout effect and the more intense lift effect of the oceanic moisture by the high mountains resulted in the more depleted δ^18O and δD values in summer precipitation at Kathmandu. A deuterium excess and the local meteoric water lines reveal that evaporation at Kathmandu exceeds that at Mawlong. The data also show that the Indian monsoon activities at Mawlong are more intense than those at Kathmandu.  相似文献   

18.
利用一个耦合了简化的简单生物圈模式的大气环流谱模式(SSiB-GCM),初步探讨了青藏高原冬季积雪异常对东、南亚夏季风环流和降水的影响及其机理。结果表明,高原地区冬季积雪增加将使随后的夏季东、南亚季风明显减弱,主要表现为东、南亚季风区降水减少,索马里急流、印度季风槽和印度西南气流减弱。另外,还提出欧亚大陆雪盖与整个高原雪盖和高原东部雪盖对东、南亚夏季风影响的敏感性问题。与欧亚大陆雪盖相比,高原雪盖是影响东、南亚季风的更敏感区,冬季高原以外雪盖增加,有可能使亚洲季风增强;当高原东部雪盖增加时,高原以东地区及印支半岛降水减少,印度东部、南部和孟加拉湾西北部降水反而增加  相似文献   

19.
《科学通报(英文版)》1999,44(20):1851-1851
Guliya ice core records, high lake-level records in the Qinghai-Xizang Plateau and at its north side as well as vegetation succession records indicated that during the period of 30-40 kaBP, namely the later age of the megainterstadial of last glacial period, or the marine oxygen isotope stage 3, the climate of the Qinghai-Xizang Plateau was exceptionally warm and humid, the temperature was 2-4℃ higher than today and the precipitation was 40% to over 100% higher than the current average, all these suggested the existence of an exceedingly strong summer monsoon event. It has been inferred that the occurrence of such an event was attributed, on the one hand, to the stronger summer low pressure over the Plateau, which strengthened the attraction to the summer monsoon; on the other hand, to the vigorous evaporation of the tropic ocean surface, which promoted the moisture-rich southwest monsoon to flow over the Qinghai-Xizang Plateau. The background responsible for the formation of the very strong summer monsoon was that the period of 30-40 kaBP was just in the strong insolation stage of the 20ka precessional cycle, when the Qinghai-Xizang Plateau received extraordinary strong solar radiation and thus enlarged the thermodynamical contrast between the Plateau and the mid-south part of the Indian Ocean.  相似文献   

20.
Guliya ice core records, high lake-level records in the Qinghai-Xizang Plateau and at its north side as well as vegetation succession records indicated that during the period of 30–40 kaBP, namely the later age of the megainterstadial of last glacial period, or the marine oxygen isotope stage 3, the climate of the Qinghai-Xizang Plateau was exceptionally warm and humid, the temperature was 2–4°C higher than today and the precipitation was 40% to over 100% higher than the current average, all these suggested the existence of an exceedingly strong summer monsoon event. It has been inferred that the occurrence of such an event was attributed, on the one hand, to the stronger summer low pressure over the Plateau, which strengthened the attraction to the summer monsoon; on the other hand, to the vigorous evaporation of the tropic ocean surface, which promoted the moisture-rich southwest monsoon to flow over the Qinghai-Xizang Plateau. The background responsible for the formation of the very strong summer monsoon was that the period of 30–40 kaBP was just in the strong insolation stage of the 20ka precessional cycle, when the Qinghai-Xizang Plateau received extraordinary strong solar radiation and thus enlarged the thermodynamical contrast between the Plateau and the midsouth part of the Indian Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号