首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Metallocarboxypeptidase D (CPD) functions in protein and peptide processing. The Drosophila CPD svr gene undergoes alternative splicing, producing forms containing 1–3 active or inactive CP domains. To investigate the function of the various CP domains, we created transgenic flies expressing specific forms of CPD in the embryonic-lethal svr PG33 mutant. All constructs containing an active CP domain rescued the lethality with varying degrees, and full viability required inactive CP domain-3. Transgenic flies overexpressing active CP domain-1 or -2 were similar to each other and to the viable svr mutants, with pointed wing shape, enhanced ethanol sensitivity, and decreased cold sensitivity. The transgenes fully compensated for a long-term memory deficit observed in the viable svr mutants. Overexpression of CP domain-1 or -2 reduced the levels of Lys/Arg-extended adipokinetic hormone intermediates. These findings suggest that CPD domains-1 and -2 have largely redundant functions in the processing of growth factors, hormones, and neuropeptides.  相似文献   

2.
PTEN prevents tumor genesis by antagonizing the PI3 kinase/Akt pathway through D3 site phosphatase activity toward PI(3,4)P2 and PI(3,4,5)P3. The structural determinants of this important specificity remain unknown. Interestingly, PTEN shares remarkable homology to voltage-sensitive phosphatases (VSPs) that dephosphorylate D5 and D3 sites of PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3. Since the catalytic center of PTEN and VSPs differ markedly only in TI/gating loop and active site motif, we wondered whether these differences explained the variation of their substrate specificity. Therefore, we introduced mutations into PTEN to mimic corresponding sequences of VSPs and studied phosphatase activity in living cells utilizing engineered, voltage switchable PTENCiV, a Ci-VSP/PTEN chimera that retains D3 site activity of the native enzyme. Substrate specificity of this enzyme was analyzed with whole-cell patch clamp in combination with total internal reflection fluorescence microscopy and genetically encoded phosphoinositide sensors. In PTENCiV, mutating TI167/168 in the TI loop into the corresponding ET pair of VSPs induced VSP-like D5 phosphatase activity toward PI(3,4,5)P3, but not toward PI(4,5)P2. Combining TI/ET mutations with an A126G exchange in the active site removed major sequence variations between PTEN and VSPs and resulted in D5 activity toward PI(4,5)P2 and PI(3,4,5)P3 of PTENCiV. This PTEN mutant thus fully reproduced the substrate specificity of native VSPs. Importantly, the same combination of mutations also induced D5 activity toward PI(3,4,5)P3 in native PTEN demonstrating that the same residues determine the substrate specificity of the tumor suppressor in living cells. Reciprocal mutations in VSPs did not alter their substrate specificity, but reduced phosphatase activity. In summary, A126 in the active site and TI167/168 in the TI loop are essential determinants of PTEN’s substrate specificity, whereas additional features might contribute to the enzymatic activity of VSPs.  相似文献   

3.
Summary In the course of the present investigations, NG induced Mal mutants ofE. coli B were subjected to the following studies: 1. mutation rate for different genetical characters; 2. frequency of reversion to wild type; 3. classification of Mal UVs mutants formalA ormalB; 4. genetical analysis of themalB UVs mutants. It was found that approximately 40% of the Ma1 UVs mutants mapped atmalA and 60% atmalB.

Ce travail a été réalisé grâce au support financier du Conseil National des Recherches du Canada.  相似文献   

4.
The mitogen-activated protein kinase-activated protein kinase-5 (MK5) resides predominantly in the nucleus of resting cells, but p38MAPK, extracellular signal-regulated kinases-3 and -4 (ERK3 and ERK4), and protein kinase A (PKA) induce nucleocytoplasmic redistribution of MK5. The mechanism by which PKA causes nuclear export remains unsolved. In the study reported here we demonstrated that Ser-115 is an in vitro PKA phosphoacceptor site, and that PKA, but not p38MAPK, ERK3 or ERK4, is unable to redistribute MK5 S115A to the cytoplasm. However, the phosphomimicking MK5 S115D mutant resides in the cytoplasm in untreated cells. While p38MAPK, ERK3 and ERK4 fail to trigger nuclear export of the kinase dead T182A and K51E MK5 mutants, S115D/T182A and K51E/S115D mutants were able to enter the cytoplasm of resting cells. Finally, we demonstrated that mutations in Ser-115 affect the biological properties of MK5. Taken together, our results suggest that Ser-115 plays an essential role in PKA-regulated nuclear export of MK5, and that it also may regulate the biological functions of MK5.  相似文献   

5.
Summary Phospholipase digestion of rat intestinal epithelial cell membranes was performed in order to study the influence of membrane phospholipids on the binding activity of VIP receptors. Phospholipases A2 and C strougly (ED504×10–2 and 4×10–1 g/ml, respectively) and rapidly reduced125I-VIP binding to membranes whereas phospholipase D was ineffective. This suggests an important role of both hydrophobic and hydrophilic groups of phospholipids on VIP receptor binding activity.This work was supported by INSERM (CRL 827017) and the Fondation pour la Recherche Médicale Française.  相似文献   

6.
Tight junctions control paracellular permeability. Here, we analyzed the impact of residues in the second extracellular loop (ECL2) of mouse claudin-5 on paracellular permeability. Stable expression of claudin-5wild type in MDCK-II cells—but not that of mutants R145A, Y148A, Y158A or E159Q—increased transepithelial electrical resistance and decreased fluorescein permeation. Expression of claudin-5Y148A, Y158A or E159Q enhanced permeability of FITC-dextran10 kDa, which was unchanged in cells expressing claudin-5wild type or claudin-5R145A. In contrast, targeting to tight junctions, strand morphology and tight junction assembly were unchanged. It is concluded that R145 is unessential for trans-interaction of claudin-5, but necessary for tightening against small solutes and ions. The highly conserved residues Y148, Y158 and E159 in ECL2 of claudin-5 contribute to homo- and/or heterophilic trans-interaction between classic claudins and thereby tighten the paracellular space against ions, small and large molecules. These results provide novel insights into the molecular function of tight junctions.  相似文献   

7.
Summary Molecular mechanics and NMR studies of the D ring conformation of ergot alkaloids demonstrate that both D1 and D2 forms may exist in solution. The comparison of the geometric parameters defining the spatial relations between the aromatic moieties and the basic nitrogen of conformationally restricted dopamine analogs, and that of ergolene, shows the D1 conformation to be the bioactive one.  相似文献   

8.
Summary The catalytic mutation of the ions Al3+ and MoO 4 2– on the mixed carrier Cd(OH)2/Co(OH)2(Tr) is recognizable by the fact that the combination Tr+Al3++MoO 4 2– is more active in the decomposition of H2O2 than the combination Tr+MoO 4 2– +Al3+.  相似文献   

9.
Summary In isolated perfused posterior gills ofE. sinensis acclimated to fresh water, NH 4 + may be used as a counter-ion for Na+ active transport. This Na+/NH 4 + coupled transport can, however, only account for a small part of the Na+ total active influx.Chargé de Recherches du FNRS-Acknowledgments. This work has been aided by a grant crédit aux chercheurs from the FNRS and by a grant No. 2.4511.76 from the FRFC.  相似文献   

10.
11.
To investigate the peculiar ionic specificity of KAAT1, an Na+- and K+-coupled amino acid cotransporter from Lepidoptera, a detailed analysis of membrane topology predictions was performed, together with sequence comparison with strictly Na+-dependent mammalian cotransporters from the same family. The analysis identified aspartate 338, a residue present also in the other cotransporter accepting K+ (CAATCH1), but absent in most mammalian transporters that have, instead, an asparagine in the corresponding position. Mutation of D338 in KAAT1 led either to non-functional transporters (D338G, D338C), or to an altered ionic selectivity (D338E, D338N), observable in uptake experiments and in electrophysiological properties. In particular, in D338E, the transport activity, while persisting in the presence of Na+, appeared to be completely abolished in the presence of K+. D338E also showed uncoupling between transport-associated current and uptake. The opposite mutation in the -aminobutyric acid transporter rGAT-1 (N327D) resulted in complete loss of function. In conclusion, aspartate 338 in KAAT1 appears to be important in allowing K+, in addition to Na+, to drive the transport mechanism, although other residues in different parts of the protein may also play a role in the complete determination of ionic selectivity.Received 23 September 2003; received after revision 11 November 2003; accepted 25 November 2003  相似文献   

12.
GPR39 is a vertebrate G protein-coupled receptor related to the ghrelin/neurotensin receptor subfamily. The receptor is expressed in a range of tissues including the pancreas, gut/gastrointestinal tract, liver, kidney and in some regions of the brain. GPR39 was initially thought to be the cognitive receptor for the peptide hormone, obestatin. However, subsequent in vitro studies have failed to demonstrate binding of this peptide to the receptor. Zn2+ has been shown to be a potent stimulator of GPR39 activity via the Gαq, Gα12/13 and Gαs pathways. The potency and specificity of Zn2+ in activating GPR39 suggest it to be a physiologically important agonist. GPR39 is now emerging as an important transducer of autocrine and paracrine Zn2+ signals, impacting upon cellular processes such as insulin secretion, gastric emptying, neurotransmission and epithelial repair. This review focuses on the molecular, structural and biological properties of GPR39 and its various physiological functions.  相似文献   

13.
The mechanism by which the novel, pure glucose-dependent insulinotropic, imidazoline derivative BL11282 promotes insulin secretion in pancreatic islets has been investigated. The roles of KATP channels, α2-adrenoreceptors, the I1-receptor-phosphatidylcholine-specific phospholipase (PC-PLC) pathway and arachidonic acid signaling in BL11282 potentiation of insulin secretion in pancreatic islets were studied. Using SUR1(-/-) deficient mice, the previous notion that the insulinotropic activity of BL11282 is not related to its interaction with KATP channels was confirmed. Insulinotropic activity of BL11282 was not related to its effect on α2-adrenoreceptors, I1-imidazoline receptors or PC-PLC. BL11282 significantly increased [3H]arachidonic acid production. This effect was abolished in the presence of the iPLA2 inhibitor, bromoenol lactone. The data suggest that potentiation of glucose-induced insulin release by BL11282, which is independent of concomitant changes in cytoplasmic free Ca2+ concentration, involves release of arachidonic acid by iPLA2 and its metabolism to epoxyeicosatrienoic acids through the cytochrome P-450 pathway. Received 5 July 2007; received after revision 18 September 2007; accepted 20 September 2007  相似文献   

14.
Summary Hypothalamic tyrosine hydroxylase (TH) activity of castrate rats is modulated by testosterone propionate (TP) in vivo. Kinetic studies revealed that bothV max andK m were virtually unaltered for substrate tyrosine in the presence of an excess of DMPH4 cofactor. TP replacement to castrate rats increased theK m for added DMPH4 cofactor, whileV max decreased. These results suggest that TP decreases TH activity of castrate rats by inhibiting the enzymereduced pteridine cofactor complex.  相似文献   

15.
Menkes disease (MD) is an X-linked recessive disorder characterized by copper deficiency resulting in a diminished function of copper-dependent enzymes. Most MD patients die in early childhood, although mild forms of MD have also been described. A diversity of mutations in the gene encoding of the Golgi-resident copper-transporting P1B-type ATPase ATP7A underlies MD. To elucidate the molecular consequences of the ATP7A mutations, various mutations in ATP7A associated with distinct phenotypes of MD (L873R, C1000R, N1304S, and A1362D) were analyzed in detail. All mutants studied displayed changes in protein expression and intracellular localization parallel to a dramatic decline in their copper-transporting capacity compared to ATP7A the wild-type. We restored these observed defects in ATP7A mutant proteins by culturing the cells at 30°C, which improves the quality of protein folding, similar to that which as has recently has been demonstrated for misfolded ATP7B, a copper transporter homologous to ATP7A. Further, the effect of the canine copper toxicosis protein COMMD1 on ATP7A function was examined as COMMD1 has been shown to regulate the proteolysis of ATP7B proteins. Interestingly, in addition to adjusted growth temperature, binding of COMMD1 partially restored the expression, subcellular localization, and copper-exporting activities of the ATP7A mutants. However, no effect of pharmacological chaperones was observed. Together, the presented data might provide a new direction for developing therapies to improve the residual exporting activity of unstable ATP7A mutant proteins, and suggests a potential role for COMMD1 in this process.  相似文献   

16.
Summary 3 monionic detergents, Triton X-100, Lubrol WX and NP-40, inhibited binding of [3H]-ATII to bovine adrenocortical plasma membranes. This effect appeared to be direct and not due to solubilization of the ATII receptor by these agents. Sodium deoxycholate and the chaotropic ions, ClO 4 and Br, produced effects similar to the nonionic detergents.Supported by grants from the Quebec Heart Foundation and the Medical Research Council of Canada. The authors acknowledge the technical assistance of Mrs D. Michaud and the secretarial aide of Mrs D. Huot-Blais, and Miss L. Leblanc.  相似文献   

17.
The effects of three tricyclic antidepressants (TCAs) and two serotonin selective reuptake inhibitors (SSRIs) have been studied with an electrophysiological approach on Xenopus laevis oocytes expressing the rat GABA (γ-Aminobutyric-acid) transporter rGAT1. All tested TCAs and SSRIs inhibit the GABA-associated current in a dose-dependent way with low but comparable efficacy. The pre-steady-state and uncoupled currents appear substantially unaffected. The efficacy of desipramine, but not of the other drugs, is strongly increased in the lysine-glutamate or -aspartate mutants K448E and K448D. Comparison of I max and K 0.5GABA in the absence and presence of desipramine showed that both parameters are reduced by the drug in the wild-type and in the K448E mutant. This suggests an uncompetitive inhibition, in which the drug can bind only after the substrate, an explanation in agreement with the lack of effects on the pre-steady-state and leak currents, and with the known structural data.  相似文献   

18.
Summary The effects of inhibition by ouabain and stimulation by high frequency drive of the sarcolemmal Na+–K+ active transport system on the resting input conductance (gi) of guinea-pig ventricular muscles were determined. Although both pump inhibition and stimulation were associated with changes in electrophysiological properties of the muscles, neither had a significant effect on gi.Supported by a grant from the North Carolina Heart Association.  相似文献   

19.
Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg2+), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg2+ ([Mg2+]i) and this is facilitated through the ATP-binding site of the channel’s kinase domain. The synergistic block of TRPM7 by chloride and Mg2+ is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg2+]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells.  相似文献   

20.
A2 adenosine receptors were characterized in human glomerular mesangial cells using [3H] 5-N-ethylcarboxamidoadenosine (NECA) as a tracer. There was a single group of receptor sites with a KD of 184 nM, and a number of sites of 317 fmol/mg of cell protein. Adenosine agonists increased 5-nucleotidase activity via A2 receptor stimulation. The specific A2 agonist-NECA, at 0.1 and 1 m, was a potent inhibitor of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号