首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Prion diseases are neurodegenerative disorders associated with a conformational conversion of the prion PrP protein, in which the β-strand content increases and that of the α helix decreases. However, the structure of the pathogenous form PrPSc, occurring after conformational conversion of the normal cellular form PrPC, is not yet known. From sequence analysis, we have previously proposed that helix H2 of the prion PrPC structure might be a key region for this structural conversion. More recently, we identified the TATA box-binding protein fold as a putative scaffold that may locally satisfy the predicted secondary-structure organisation of PrPSc. In the present analysis, we detail the schematic construction of PrPSc monomeric and dimeric models, based on this hypothesis. These models are globally compatible with available data and therefore may provide further insights into the structurally and functionally elusive PrP protein. Some comments are also devoted to a comparison of the yeast Ure2p prion and animal prions. Received 29 July 2002; received after revision 24 October 2002; accepted 24 October 2002 RID="*" ID="*"Corresponding author.  相似文献   

3.
4.
5.
The neurotoxins produced by various species of Clostridia are the causative agents of botulism and tetanus. The ability of the toxins, specifically those of the botulinum neurotoxin family, to disrupt neurotransmission has been exploited for use in several medical indications and now represents the therapeutic option of choice in a number of cases. Clostridial neurotoxins have been discovered to have a multi-domain structure that is shared between the various proteins of the family, and it has also been determined that each domain contributes a specific role to the holotoxin. The extensive use of recombinant expression approaches, along with solution of multiple crystallographic structures of individual domains, has enabled researchers to explore structurefunction relationships of the toxin domains more closely. These advances have facilitated a greater understanding of the potential use of individual domains for a wide variety of purposes, including the development of new therapeutics. Received 21 October 2005; received after revision 10 November 2005; accepted 16 November 2005  相似文献   

6.
Structure, function and evolution of antifreeze proteins   总被引:16,自引:0,他引:16  
Antifreeze proteins bind to ice crystals and modify their growth. These proteins show great diversity in structure, and they have been found in a variety of organisms. The ice-binding mechanisms of antifreeze proteins are not completely understood. Recent findings on the evolution of antifreeze proteins and on their structures and mechanisms of action have provided new understanding of these proteins in different contexts. The purpose of this review is to present the developments in contrasting research areas and unite them in order to gain further insight into the structure and function of the antifreeze proteins. Received 2 September 1998; received after revision 21 October 1998; accepted 2 November 1998  相似文献   

7.
T-cell signal transduction and the role of protein kinase C   总被引:3,自引:0,他引:3  
The T lymphocyte has a vital part to play in maintaining the host response to bacterial and viral infection and also appears to play a key pathological role in autoimmune diseases such as rheumatoid arthritis. In this review, we summarize the signalling pathways which trigger antigen-driven T-cell proliferation and examine the evidence which suggests that protein kinase C (PKC) is fundamental to this process. Finally, we discuss the therapeutic potential that PKC inhibitors may have in the treatment of autoimmune disease. Received 31 March 1998; received after revision 19 May 1998; accepted 19 May 1998  相似文献   

8.
Hydroxyproline-rich glycoproteins (HRGPs) are ubiquitous architectural components of the growing plant cell wall, accounting for as much as 10-20% of the dry weight. HRGPs are implicated in all aspects of plant growth and development, including responses to stress. The HRGP superfamily contains three major groups which represent a continuum of peptide periodicity and hydroxyproline-O-glycosylation. These groups range from the highly periodic and lightly arabinosylated repetitive proline-rich proteins (PRPs), through the crosslinked extensins which are periodic and highly arabinosylated, to the arabinogalactan-proteins (AGPs) which are the most highly glycosylated and least periodic. The repetitive units are small, often only four- to six-residue-glycosylated modules viewed hypothetically as functional motifs, or glycomodules. The Hyp contiguity hypothesis predicts that Hyp arabinosylation increases with Hyp contiguity and that clustered noncontiguous Hyp residues are sites of arabinogalactan polysaccharide addition in the AGPs and gums. Recent results involving glycosylation site mapping of endogenous HRGPs and HRGP design using synthetic genes have corroborated the hypothesis. The uses of synthetic genes in HRGP glycosylation site mapping and structural/functional analysis are also discussed.  相似文献   

9.
Peptide aptamers have emerged as powerful new tools for molecular medicine. They can specifically bind to and functionally inactivate a given target molecule under intracellular conditions. Typically, peptide aptamers are generated by screening a randomized peptide expression library, displayed from the Escherichia coli thioredoxin A (TrxA) protein. Here, we transferred peptide moieties from defined TrxA-based peptide aptamers to alternative scaffold proteins, such as the green fluorescent protein and staphylococcal nuclease. Yeast and mammalian two-hybrid assays as well as in vitro binding analyses show that the TrxA scaffold can be a major determinant for the binding of peptide aptamers. In addition, we demonstrate that TrxA can correctly display peptide sequences that correspond to the binding domains of natural interaction partners. Therefore, sequence analyses of TrxA-based peptide aptamers, isolated by two-hybrid screening from randomized expression libraries, should also be useful to find cellular binding partners for a given target protein, by homology. Received 1 August 2002; received after revision 17 September 2002; accepted 19 September 2002 RID="*" ID="*"Corresponding author.  相似文献   

10.
Escherichia coli penicillin-binding protein PBP3 is a key element in cell septation. It is presumed to catalyse a transpeptidation reaction during biosynthesis of the septum peptidoglycan but, in vitro, its enzymatic activity has only been demonstrated with thiolester analogues of the natural peptide substrate. It has no detectable transglycosylase activity with lipid II as substrate. This tripartite protein is constructed of an N-terminal membrane anchor-containing module that is essential for cell septation, a non-penicillin-binding (n-PB) module of unknown function and a C-terminal penicillin-binding (PB) module exhibiting all the characteristic motifs of penicilloyl serine transferases. The n-PB module, which is required for the folding and stability of the PB module, may provide recognition sites for other cell division proteins. Initiation of septum formation is not PBP3-dependent but rests on the appearance of the FtsZ ring, and is thus penicillin-insensitive. The control of PBP3 activity during the cell cycle is briefly discussed.  相似文献   

11.
The sporulation program in Bacillus subtilis ends in the formation of a highly resistant endospore that can withstand extremes of heat, mechanical disruption, ultraviolet irradiation, lytic enzymes and chemical attack. These properties are attributed mainly to the unique structure of spore coat and cortex, as well as to the physical state of the spore cytoplasm. The outermost layer of the spore, called the coat, has two morphologically distinct sublayers: an electron-dense outer coat and an electron-translucent inner coat. The coat is composed of more than 2 dozen proteins of varying size. Many coat genes and coat proteins have been isolated and characterized in detail, and studies of these have identified proteins with important roles in coat assembly, resistance and spore germination. We describe here characteristics of the coat proteins and propose a model for coat assembly based on recent work.  相似文献   

12.
Protein misfolding and disease: the case of prion disorders   总被引:2,自引:0,他引:2  
Recent findings strongly support the hypothesis that diverse human disorders, including the most common neurodegenerative diseases, arise from misfolding and aggregation of an underlying protein. Despite the good evidence for the involvement of protein misfolding in disease pathogenesis, the mechanism by which protein conformational changes participate in the disease is still unclear. Among the best-studied diseases of this group are the transmissible spongiform encephalopathies or prion-related disorders, in which misfolding of the normal prion protein plays a key role in the disease. In this article we review recent data on the link between prion protein misfolding and the pathogensis of spongiform encephalopathies. Received 15 July 2002; received after revision 19 August 2002; accepted 23 August 2002 RID="*" ID="*"Corresponding author.  相似文献   

13.
14.
On a cellular level, formation of memory is based on a selective change in synaptic efficacy that is both fast and, in case of important information, long-lasting. Rapidity of cellular changes is achieved by modifying preexisting synaptic molecules (receptors, ion channels), which instantaneously alters the efficacy of synaptic transmission. Endurance, that is the formation of long-term memory (LTM), is based on transient and perhaps also long-lasting changes in protein synthesis. A number of different methods exist to interfere with the synthesis of specific proteins or proteins in general. Other methods, in turn, help to identify proteins whose synthesis is changed following learning. These mostly molecular methods are briefly described in the present review. Their successful application in a variety of memory paradigms in invertebrates and vertebrates is illustrated. The data support the importance of selective changes in gene expression for LTM. Proteins newly synthesized during memory consolidation are likely to contribute to restructuring processes at the synapse, altering the efficiency of transmission beyond the scope of STM. Increased or, less often, decreased synthesis of proteins appears during specific time windows following learning. Recent evidence supports older data suggesting that two or even more waves of protein synthesis exist during the consolidation period. It is expected that the new molecular methods will help to identify and characterize molecules whose expression changes during LTM formation even in complex vertebrate learning paradigms.  相似文献   

15.
The chloroplast is the hallmark organelle of plants. It performs photosynthesis and is therefore required for photoautotrophic plant growth. The chloroplast is the most prominent member of a family of related organelles termed plastids which are ubiquitous in plant cells. Biogenesis of the chloroplast from undifferentiated proplastids is induced by light. The generally accepted endosymbiont hypothesis states that chloroplasts have arisen from an internalized cyanobacterial ancestor. Although chloroplasts have maintained remnants of the ancestral genome (plastome), the vast majority of the genes encoding chloroplast proteins have been transferred to the nucleus. This poses two major challenges to the plant cell during chloroplast biogenesis: First, light and developmental signals must be interpreted to coordinately express genetic information contained in two distinct compartments. This is to ensure supply and stoichiometry of abundant chloroplast components. Second, developing chloroplasts must efficiently import nuclear encoded and cytosolically synthesized proteins. A subset of proteins, including such encoded by the plastome, must further be sorted to the thylakoid compartments for assembly into the photosynthetic apparatus. Received 1 September 2000; received after revision 27 October 2000; accepted 1 November 2000  相似文献   

16.
In the early 1990s, the search for protein kinases led to the discovery of a novel family of non-receptor tyrosine kinases, the Janus kinases or JAKs. These proteins were unusual because they contained two kinase homology domains and no other known signaling modules. It soon became clear that these were not ‘just another’ type of kinase. Their ability to complement mutant cells insensitive to interferons and to be activated by a variety of cytokines demonstrated their central signaling function. Now, as we approach the end of the decade, it is evident from biochemical studies to knockout mice that JAKs play non-redundant functions in development, differentiation, and host defense mechanisms. Here, recent progress is reviewed, with particular emphasis on structure-function studies aimed at revealing how this family of tyrosine kinases is regulated.  相似文献   

17.
Much effort has been devoted recently to expanding the amino acid repertoire in protein biosynthesis in vivo. From such experimental work it has emerged that some of the non-canonical amino acids are accepted by the cellular translational machinery while others are not, i.e. we have learned that some determinants must exist and that they can even be anticipated. Here, we propose a conceptual framework by which it should be possible to assess deeper levels of the structure of the genetic code, and based on this experiment to understand its evolution and establishment. First, we propose a standardised repertoire of 20 amino acids as a basic set of conserved building blocks in protein biosynthesis in living cells to be the main criteria for genetic code structure and evolutionary considerations. Second, based on such argumentation, we postulate the structure and evolution of the genetic code in the form of three general statements: (i) the nature of the genetic code is deterministic; (ii) the genetic code is conserved and universal; (iii) the genetic code is the oldest known level of complexity in the evolution of living organisms that is accessible to our direct observation and experimental manipulations. Such statements are discussed as our working hypotheses that are experimentally tested by recent findings in the field of expanded amino acid repertoire in vivo. Received 30 June 1999; accepted 9 July 1999  相似文献   

18.
Novel regulation and function of Src tyrosine kinase   总被引:4,自引:0,他引:4  
Src tyrosine kinase is a critical signal transducer that modulates a wide variety of cellular functions. Misregulation of Src leads to cell transformation and cancer. Heterotrimeric guanine-nucleotide-binding proteins (G proteins) are another group of signaling molecules that transduce signals from cell-surface receptors to generate physiological responses. Recently, it was discovered that Gαs and Gαi could directly stimulate Src family tyrosine kinase activity. This novel regulation of Src tyrosine kinase by G proteins provides insights into the adenylyl cyclase-independent signaling mechanisms involved in ligand-induced receptor desensitization, internalization and other physiological processes. Received 17 August 2001; received after revision 22 October 2001; accepted 24 October 2001  相似文献   

19.
The physiological metabolism of proteins guarantees that different cellular compartments contain the appropriate concentration of proteins to perform their biological functions and, after a variable period of wear and tear, mediates their natural catabolism. The equilibrium between protein synthesis and catabolism ensures an effective turnover, but hereditary or acquired abnormalities of protein structure can provoke a premature loss of biological function, an accelerated catabolism and diseases caused by the loss of an irreplaceable function. In certain proteins, abnormal structure and metabolism are associated with a strong tendency to self-aggregation into a polymeric fibrillar structure, and in these cases the disease is not principally caused by the loss of an irreplaceable function but by the action of this new biological entity. Amyloid fibrils are an apparently inert, insoluble, mainly extracellular protein polymer that kills the cell without tissue necrosis but by activation of the apoptotic mechanism. We analyzed the data reported so far on the structural and functional properties of four prototypic proteins with well-known biological functions (lysozyme, transthyretin, β2-microglobulin and apolipoprotein AI) that are able to create amyloid fibrils under certain conditions, with the perspective of evaluating whether the achievement of biological function favors or inhibits the process of fibril formation. Furthermore, studying the biological functions carried out by amyloid fibrils reveals new types of protein-protein interactions in the transmission of messages to cells and may provide new ideas for effective therapeutic strategies. Received 9 November 1998; received after revision 15 January 1999; accepted 15 January 1999  相似文献   

20.
The finding that mitochondria contain substrates for protein kinases lead to the discovery that protein kinases are located in the mitochondria of certain tissues and species. These include pyruvate dyhydrogenase kinase, branched-chain α-ketoacid dehydrogenase kinase, protein kinase A, protein kinase Cδ, stress-activated kinase and A-Raf as well as unidentified kinases. Recent evidence suggests that mitochondrial protein kinases may be involved in physiological processes such as apoptosis and steroidogenesis. Additionally, the novel finding of low-molecular-weight GTP-binding proteins in mitochondria suggests the possibility that these may interact with mitochondrial protein kinases to regulate the activity of mitochondrial effector proteins. The fact that there are components of cellular regulatory systems in mitochondria indicates the exciting possibility of undiscovered systems regulating mitochondrial physiology. Received 19 June 2001; received after revision 7 August 2001; accepted 8 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号