首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
提出并仿真验证了一种用于互补金属半导体氧化物图像传感器的10 位数字相关双采样列级两步单斜模数转换器. 数字相关双采样通过减法器实现,使像素复位信号与像素曝光信号的量化结果在数字域作差,降低了列级读出电路中非理想因素的影响;比较器采用基尔伯特单元,避免了传统两步单斜ADC 中因记忆电容的使用所导致的时钟馈通和斜坡斜率误差的问题. 通过在Matlab 中建模仿真验证,ADC 的信噪失真比为61.4 dB,有效位为9.9 bit,量化周期为140 个时钟周期. 与传统10 位数字相关双采样单斜ADC 相比,可节省2 170 个时钟周期,同时其平均FPN 较传统两步单斜结构可以降低0.81 LSB.  相似文献   

2.
介绍了Pipeline ADC噪声与电容的关系及减小噪声的方法,并以10位ADC为例通过噪声计算电容.ADC的主要噪声源是量化噪声和热噪声.量化噪声主要决定ADC的精度.热噪声限制了ADC的信噪比,是提高精度的主要瓶颈.可以通过增大电容来减小.  相似文献   

3.
提出了一种基于伪随机补偿技术的流水线模数转换器(ADC)子级电路.该子级电路能够对比较器失调和电容失配误差进行实时动态补偿.误差补偿采用伪随机序列控制比较器阵列中参考比较电压的方式实现.比较器的高低位被随机分配,以消除各比较器固有失调对量化精度的影响,同时子ADC输出的温度计码具有伪随机特性,可进一步消除MDAC电容失配误差对余量输出的影响.基于该子级电路设计了一种12位250 MS/s流水线ADC,电路采用0.18μm 1P5M1.8 V CMOS工艺实现,面积为2.5 mm2.测试结果表明,该ADC在全速采样条件下对20 MHz输入信号的信噪比(SNR)为69.92 dB,无杂散动态范围(SFDR)为81.17 dB,积分非线性误差(INL)为-0.4~+0.65 LSB,微分非线性误差(DNL)为-0.2~+0.15 LSB,功耗为320 mW.  相似文献   

4.
针对植入式医疗电子的应用需求设计了一个8位100 kS/s的低功耗逐次逼近型模数转换器(SAR ADC),并且基于0.13μm 1P8M工艺进行了流片(tape-out)验证.为了达到降低功耗的设计目标,对SAR ADC的子模块进行了仔细的分析设计:采用满足精度和速度要求的无源互补开关;采用失调(offset)优化的无静态电流的动态比较器;采用无静态功耗的电容阵列子数模转化器.测试结果表明,当输入测试信号为9.37 kHz时,该SAR ADC的信号噪声失真比(SNDR)为49.2 dB,动态无杂散范围(SFDR)为63 dB,有效位(ENOB)为7.8位.其微分非线性(DNL)和积分非线性(INL)分别为-0.15/+0.15 LSB和-0.35/+0.23 LSB,功耗为3.2μW,优值(FoM)为143 fJ/conversion-step.  相似文献   

5.
随着电子信息技术的发展,移动便携电子设备不断进入人们生活的各个方面.应用在模数混合信号系统的性能也在不断提高.模数转换器作为模数混合信号系统中核心的组成部分,ADC的性能水平直接决定了使用它的系统的性能水平.由于集成电路元件间匹配精度的限制,在同一工艺条件下,SARADC很难实现高精度,而Σ-ΔADC采用了过采样和噪声整形技术,大大降低了对元器件匹配的要求,易实现高精度,但量化器单元电路功耗较高,针对这些特点,提出了一种将SARADC和Σ-ΔADC相结合的架构——2阶5位Σ-Δ混合架调制器.其在传统Σ-ΔADC的结构上去除Flash型量化器,用低功耗的SAR型ADC作为量化器,保持了Σ-ΔADC的高精度特点,基于开关电容、积分器和采用动态比较器的逐次逼近型ADC来实现.ADC中的积分器采用运算跨导放大器(OTA)实现,前馈调制器中的多位量化器和模拟加法器由SAR模数转换器实现,模拟无源加法器嵌入到由电容器阵列和动态比较器组成的SAR ADC中,其中动态比较器无静态功耗.该芯片基于SMIC 180 nm CMOS工艺设计和验证,芯片版图的有效面积为0.56 mm2.通过对该调制器芯片的后...  相似文献   

6.
设计了一种高速的逐次逼近型模数转换器(Successive Approximated Register Analog-Digital Converter,SAR ADC),与传统SAR ADC相比,该ADC除了采样电容阵列,额外使用了一个辅助数模转换器(Auxiliary Digital-Analog Converter,AUX-DAC)来实现2-bit/cycle.系统设计的SAR ADC使用了一个共享的内插预放大器,可以将输入信号和比较器隔离开,减小了比较器的回踢噪声.为了进一步提高转换速度,采用比较器交替工作模式,其输出结果直接送给电容阵列进行处理,与传统SAR ADC相比大大减小了逻辑延时.由于架构中使用了多路比较器,因此采用前台校准技术用来校正比较器的失调电压.后仿结果表明该ADC在400M采样速率和1.2V的电源电压下,可以实现48dB的SNDR,功耗为5.6mW,优值FoM为67fJ/conversion-step.  相似文献   

7.
为了降低TD-LTE终端功耗,采用0.13-μm CMOS工艺实现了一款基于TD-LTE终端的连续时间ΣΔADC。采用该ADC的TD-LTE接收机省去了传统接收机中的低通滤波器,节省了功耗。该ADC采用了3阶、3位量化的结构,并用较简单的方法实现了多余环路延迟(ELD)的补偿。该ADC的硅片测试结果显示在TD-LTE的20 MHz带宽下实现了66 dB的动态范围,功耗为25.1 mA。  相似文献   

8.
设计了用于CMOS图像传感器列级信号处理系统的10位模数转换器.该模数转换电路采用两级转换的方式,转换速度较单斜ADC提高了近8倍.设计了电阻阵列式多路斜坡发生器、级联结构比较器、数字纠错和消失调等电路,该ADC在不增加工艺成本的条件下满足了10位精度的要求.电路采用Chartered 0.35μm工艺制造.测试结果表明,该模数转换器的INL±0.5 LSB,DNL±0.5 LSB,信噪比为58.364 7 dB.  相似文献   

9.
研究了模数转换器(ADC)的数字后台校准技术,提出了一种针对2.5 b/级高速高精度流水线ADC的数字后台校准算法.在2.5b/级电容翻转式余量增益电路(MDAC)中注入与输入信号相关的抖动信号,提取MDAC中由于电容失配和放大器增益有限性造成的非线性误差,并在最终的数字输出端对这些误差进行校准.文中提出的数字后台校准算法具有电路实现简单、不中断ADC正常工作、适合高速高精度流水线ADC等优点,能有效地降低电容失配和放大器有限增益等非理想因素对流水线ADC精度的影响.仿真结果表明,经校准后的ADC信号噪声失真比可从63.3dB提高到78.7dB,无杂散动态范围由63.9 dB提高到91.8 dB.  相似文献   

10.
为了降低传统增量型Σ-ΔADC在同精度情况下的量化时钟周期数,提高转换速率,提出了1种采用粗细量化的2步式增量放大型ADC.该ADC采用SAR ADC先进行6位粗量化,再采用增量型Σ-ΔADC进行8位高精度位的细量化,通过数字码拼接完成最终量化结果.同时引入了1种增益自举C类反相器技术,有效地降低了供电电压和整体功耗.该ADC使用0.18μm标准CMOS工艺进行了电路实现,在1.2 V供电电压,1 MHz采样频率、10 k S/s的转换速率的情况下,达到了81.26 d B的信噪失真比(SNDR)和13.21位的有效位数(ENOB),最大积分非线性为0.8 LSB.并且该ADC的整体功耗为197μW,可用于低电压低功耗的仪器测量和传感器等领域.  相似文献   

11.
提出一种应用于逐次逼近型模数转换器的混合电容切换模式。该模式包含两个幅度相同但单调性相反的开关电容阵列, 无需任何额外的稳压电源和电容补偿阵列, 通过差分电压自身的互相补偿, 实现共模电压的稳定。利用上述技术, 基于0.18 μm的CMOS工艺实现一个转换速率为50 MS/s, 分辨率为10-bit的SAR ADC。设计过程中采用开窗逻辑, 减小了比较器输出信号到DAC 控制信号的传输时间; 采用包含自适应延时逻辑的比较环路, 缩短了SAR ADC低位比特的转换时间。测试结果表明, 所设计的SAR ADC在50 MS/s 的转换速率下, 可以实现57.31 dB的SNDR, 1.81 LSB的INL以及0.98 LSB的DNL。  相似文献   

12.
为了降低电子终端设备的功耗,文中提出了一种基于C-2C电容阵列DAC的超低功耗SAR ADC。首先,通过使用C-2C电容和三电平转换方案,文中的电容阵列DAC转换能耗相比传统结构降低99.41%,面积减少87.2%。接着,采用基于动态逻辑的逐次逼近寄存器(SAR)和两级全动态比较降低SAR ADC整体功耗。最后,SAR ADC在180nm CMOS工艺下进行设计与仿真。仿真结果表明:在1V电源电压,100kS/s的采样频率下,ADC的信噪失真比(SNDR)为61.59dB,有效位(ENOB)为9.93位,总功耗为0.188W,品质因素(FOM)值为1.9fJ/Conv.-step。文中设计的超低功耗SAR ADC适用于低功耗电子终端设备。  相似文献   

13.
以60 GHz毫米波高速无线传输系统为背景,对无线信号历经的频率选择性衰落信道进行了深入分析,并对接收机结构进行研究。提出一种利用数模信号混合处理的低复杂度ADC结构。该结构利用数模混合均衡器来降低频率选择性衰落信道中接收机ADC的精度要求。通过引入一个高精度、高采样率的DAC为代价,在不改变接收机性能的情况下将ADC的采样精度降低2个比特。该ADC均衡器在误码率、收敛速度等性能上相比同精度的全数字均衡器有很大提高。进一步,对该结构进行优化。通过把补偿信号的高比特位的值转换到模拟域,将引入的DAC精度降低到2~3个比特,从而进一步降低了该结构的设计复杂度和功耗。  相似文献   

14.
基于神经网络和开关电容技术提出了一种行算法型CMOS模数转换器电路结构,文中详细分析了电路的工作原理,并采用通用电路模拟程序进行了仿真,结果表明转换功能正确,输入电压递增和递减均无错码,转换过程中不需要复位,该转换器充分发挥开关电容精确处理和神经网络并行处理的优点,因而精度高,速度快,而且所需元件少,工艺完全与常规CMOS兼容,是一种有巨大发展潜力的新型CMOS转换器。  相似文献   

15.
为了降低模数转换器复杂度和功耗,基于低复杂度电容阵列DAC设计了一种低功耗逐次逼近型模数转换器(SAR ADC). 该结构中,电容阵列DAC每个电容只有两种参考电平选择,降低逻辑控制电路和电容驱动电路的复杂度,电容阵列DAC最低位电容参与转换,使需要的总单位电容数量相比单调结构减少一半;比较器采用两级动态结构,降低功耗;移位寄存器采用动态锁存电路结构,降低功耗和减少误码;电容驱动电路采用CMOS反相器结构,减少晶体管数量. SAR ADC电路仿真结果显示:在1.0 V电源电压和采样速率为100 kHz 时,SAR ADC功耗为0.45 W ,有效位(ENOB)为9.99 bit ,其单步转换功耗为4.4 fJ.  相似文献   

16.
基于180nm CMOS工艺,设计了一种2 bit/cycle结构的8 bit、100 MS/s逐次逼近模数转换器(SAR ADC). 采用两个DAC电容阵列SIG_DAC、REF_DAC实现了2 bit/cycle量化,其中SIG_DAC采用上极板采样大大减少了电容数目,分裂电容式结构和优化的异步SAR逻辑提高了ADC的转换速度. 应用一种噪声整形技术,有效提高了过采样时ADC的信噪失真比(SNDR). 在1.8 V电源电压和100 MS/s采样率条件下,未加入噪声整形时,仿真得到ADC的SNDR为46.22 dB,加入噪声整形后,过采样率为10时,仿真得到的SNDR为57.49 dB,提高了11.27 dB,ADC的有效位数提高了约1.88 bit,达到9.26 bit.   相似文献   

17.
设计了一种基于加窗逐次逼近寄存器( WSAR)模拟数字转换器( ADC)的降压型DC-DC控制器,这种WSAR-ADC适用于数字电源系统,通过对输入电压进行加窗处理,能有效地降低芯片的复杂度;并利用蚁群算法,对该DC-DC控制器的比例积分微分(PID)参数进行了整定,使得整个系统能够稳定工作。电路使用BCD(Bipolar/CMOS/DMOS)0.5μm工艺,输入电压3.3 V,输出电压1 V,设计最大负载电流2 A,纹波小于9 mV,开关频率500 kHz。经过验证,该降压型DC-DC控制器能满足数字电源的采样需求。  相似文献   

18.
采样-保持电路中的一种增益误差自校正方法   总被引:3,自引:0,他引:3  
提出一种用于流水线模数转换器(ADC)中的模拟增益误差自校正电路.该电路由一个可编程电容阵列、一个比较器和一小块数字电路组成,通过对第一级采样一保持电路的增益进行校正,使它的增益误差达到12bit转换精度的要求。仿真结果表明,整个流水线ADC的有效量化位数从原来的9.95bit提高到11bit。  相似文献   

19.
一种高速ADC静态参数的内建自测试结构   总被引:1,自引:0,他引:1  
针对混合信号电路的测试问题,提出了一种内建自测试(BIST)结构,分析并给出了如何利用该结构来计算片上高速模数转换器(ADC)的静态参数.该方法利用三角波信号作为测试激励,采用码密度直方图分析方法快速计算ADC的各静态参数.根据改进测试算法所构造的BIST结构实现了芯片内只有ADC电路的可测性设计,而不需要用到片内集成DSP.内嵌的信号发生器能自动生成高频连续三角波测试信号,适合高速ADC的测试.该BIST结构硬件开销小,易于片上集成,仿真试验表明了该结构的有效性.  相似文献   

20.
基于TSMC 0.18μm工艺设计了一个单通道5位,1.5GHz Flash模数转换器(ADC),该ADC通过改进跟踪保持电路和采用动态比较器结构实现了数据的高速转换.仿真结果表明,当输入信号达到奈奎斯特频率时,信号与噪声加谐波失真比(SNDR)为24.04dB,无杂散动态范围(SFDR)为29.97dB.为进一步提高此ADC的性能,消除非线性,基于Volterra级数搭建了数字后台校正模型.对比仿真结果,校正后谐波明显下降,SNDR提高了4.91dB,SFDR提高了6.94dB,有效位数提高了约0.82位.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号